Linear Algebra
Chapter Zero Exercises
1. A True logical statement. 2. A logical statement, but it is False, because −5 3 but 25 9. 3. A True logical statement, using the properties of inequalities found in Appendix A. 4. A False logical statement, because if x 0, then x is imaginary. 5. A True logical statement as of June 2009, with 237 consecutive weeks. 6. Not a logical statement, because it cannot be ascertained to be True or False (“best” is not
a well-defined adjective; unlike the previous Exercise, where “most number of consecutive weeks as number 1” is well defined).
7. Converse: If you can watch TV tonight, then you did your homework before dinner. Inverse: If you do not do your homework before dinner, you cannot watch TV tonight. Contrapositive: If you cannot watch TV tonight, then you did not do your homework before dinner.
8. Converse: If we don’t go to the beach tomorrow, then it rained. Inverse: If it doesn’t rain tomorrow, we will go to the beach. Contrapositive: If we go to the beach tomorrow, then it did not rain.
9. Converse: If cosx ≥ 0, then 0 ≤ x ≤ /2. Inverse: If x /2 or x 0, then cosx 0. Contrapositive: If cosx 0, then x /2 or x 0.
10. If fx is continuous on the closed interval a, b then it possesses both a maximum and a minimum on a, b. Converse: If fx possesses both a maximum and a minimum on a, b, then fx is continuous on a, b. Inverse: If fx is not continuous on a, b, then fx either does not possess an absolute maximum or an absolute minimum on a, b. Contrapositive: If fx does not possess either an absolute maximum or an absolute minimum on a, b, then fx is not continuous at x a.
11. A B a, b, c, f, g, h, i, j, m, p, q, A ∩ B c, h, j, A − B a, f, i, m, B − A b, g, p, q.
12. A B a, b, d, g, h, j, k, p, q, r, s, t, v, A ∩ B d, g, h, p, t, A − B a, j, r, B − A b, k, q, s, v.
23. If there were a largest positive number x, what can you say about x 1? 27. “If n does not have a prime factor which is at most n , then n is prime.” The number
11303 is composite. One prime factor is smaller than 100. 38. 2027 and 2029. 39. 233 49. Hint: In Step 3, write 2n1 as 22n 2n 2n. 54. f. For any two sets X and Y : X ∩ Y ⊆ X and X ∩ Y ⊆ Y. 55. a.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29 58. a. ∅, a, b, c, a, b, a, c, b, c, a, b, c; 8 subsets.
c. you get exactly the same list as the subsets on the right column.
2 Selected Answers to the Exercises
Chapter One Exercises
1.1 Exercises
1. These are found in the Key Concepts. 2. b. ‖u‖ 65 ; c. u1 1
65 ⟨−4, 7 and u2 −1
65 ⟨−4, 7 d. 3v ⟨9, 15,
5w ⟨5,−10, v 5w ⟨14, 5 and 3v− 5w ⟨4, 25 3. b. 2u ⟨10,−6, 4, 3w ⟨−6, 15, 12, 2u 3w ⟨4, 9, 16 and 2u − 3w ⟨16,−21,−8
c. ‖w‖ 45 3 5 d. u1 1 3 5
⟨−2, 5, 4 and u1 −1 3 5
⟨−2, 5, 4.
e. i. − 3 5
w ⟨6/5,−3,−12/5 ii. 2u 5v ⟨30,−6,−31 iii. 3w − 4u ⟨−26, 27, 4 iv. −4u 7v− 2w ⟨12, 2,−65.
4. a. u v ⟨1,−2, 7, 3 b. u w ⟨−1,−3, 4,−2 c. v− w ⟨2, 1, 3, 5 d. − 2u ⟨−6, 10,−2,−14 e. 3
4 v − 3
2 , 9
4 , 9
2 ,−3 f. − 5
3 w 20
3 ,− 10
3 ,−5, 15
g. 5u 3v ⟨9,−16, 23, 23 h. − 3 2
u 5 4
v −7, 45 4
, 6,− 31 2
i. 2u − 3v 7w ⟨−16,−5, 5,−37 j. − 5u 2v− 4w ⟨−3, 23,−5,−7 k. − 3
2 u 3
4 v− 5
3 w 2
3 , 77
12 ,−2, 3
2 l. 3
2 u − 3
4 v 2w −2,− 23
4 , 3,− 9
2 5. u ⟨−15, 6, 7 and v ⟨42,−17,−16. 6. Yes: ⟨−3, 7 40⟨5,−2 29⟨−7, 3. 7. Yes: ⟨−17,−9, 29,−37 5⟨3,−5, 1, 7 8⟨−4, 2, 3,−9. 8. No: Using the first two coordinates, we get x −4 and y 9, but although these satisfy
the 3rd coordinate, they do not satisfy the 4th. 9. u ⟨−3, 4, 2, 6,−7 and v ⟨−1,−3, 5,−3, 2. 10. 7,−3 11. −4, 1, 7 12. u ⟨−4, 4,−8 22. Contrapositive: if u ⟨u1, u2 and v ⟨v1, v2 are vectors in 2, then they are not
parallel to each other if and only if u1v2 − u2v1 ≠ 0. 35. PQ is 26 cm. long.
1.2 Exercises
1. y 4x/7 2. y −5x/3 3. x 5t, y −4t, z 2t, and t x/5 y/−4 z/2. 4. x −t, y 3t, z −6t, and t −x y/3 z/−6. 5. 7x 5y 6 6. x 2 − 3t, y −7 6t, z 4 8t, and t x − 2
−3
y 7 6
z − 4 8
7. x 3 2t, y 2, z −5 − 5t. Not possible because the direction vector has 0 in the y-component.
8. v PQ ⟨4,−2, 3, so x −4 4t, y 3 − 2t, z −5 3t is one possible answer (other answers are possible).
9. 2x − 11y z 0. 10. 31x − 29y − 13z 0. 11. 10x − 2y 15z 0. We must solve for s from y, solve for r from z, then substitute these
into x. 12. Span⟨4,−10, 6,⟨−6, 15,−9 is only a line through the origin, because the vectors are
parallel to each other. 13. x y z 3 14. 9x 10y − 2z 28
Selected Answers to the Exercises 3
15. They determine a line because the vector AB is parallel to AC. 17. 3,−4, 7 satisfies the equation. If t 1, we get the point 7,−7, 13, which also satisfies
the equation. Since two points on the line are also on the plane, the whole line is on the plane. Alternatively, you can solve for x, y and z from the equation of the line, and substitute them into that of the plane, and get 0 0, showing that the equation of the plane is satisfied by every point on the line.
18. If Q 3, 4,−1, then PQ ⟨1,−1,−8 is not parallel to ⟨1,−2, 5, so P is not on L. Equation: 21x 13y z 114.
19. 7x 2y 4z 15 20. − 65 29
, 21 29
, 52 29
23. a. the point does not satisfy the symmetric equations; b. x − 5 3
y 2
5 −z 4
24. 13x − 7y 4z 95 25. 17x − 4y 22z −80 28. 28. a. 2x 6y 3z 0; b. w does not satisfy this equation. 33. d. 6x − 5y 4z 60; g. 3x − 2z 18 i. z −5 34. a. D at x0 − x12 bt y0 − y12 ct z0 − z12
b. dD dt
2t ax0 − x1 by0 − y1 cz0 − z1
c. t ax1 − x0 by1 − y0 cz1 − z0; d. d 2D
dt2 2 0.
e. the critical point is a local minimum by the 2nd derivative test; since D goes to positive infinity in both directions, the critical point is also an absolute maximum.
35. The critical value is t −3 66
; 53 11
,− 67 22
, 51 22
; distance: 7 22
374
36. The critical value is t 14 30
; 98 15
, 7 3
,− 46 15
; distance: 1 15
25530
1.3 Exercises
1. ‖u‖ 119 . 2. 2. cos 5/ 3161 and ≈ 1. 481 radians. 3. ‖2u 5v‖ 941 ≈ 32. 68, and ‖2u‖ ‖5v‖ 136 1625 ≈ 51. 97. The second
quantity should be bigger by the Triangle Inequality. 4. cos 37/ 6391 , so ≈ 1. 09 radians. 5. cos −15/ 7 23 , so ≈ 2. 034 radians. 6. cos−1 1/ 3 54. 73560
7. 71. 06820, 60. 87840, 35. 79580
8. −2911 9. 4569 10. 7837 11. 24 12. ‖u‖ 29, ‖v‖ 13, and ‖4u 9v‖ 2305 13. 6x − 5y 2z −15. 14. 2x 5y − 9z 40 15. Take the dot product with both u and v. 16. a. 13, 3, 6 b. 5x 13y z 110 17. x y − z 10; they intersect at 2, 5,−3.
4 Selected Answers to the Exercises
18. ⟨x, y, z ⟨5,−3, 7 t⟨9, 22, 17; they intersect at 97 14
, 12 7
, 149 14
.
19. c. 7x 5y − 3z 50 20. c. 7x 11y − 13z 46 and 7x 11y − 13z 104 21. ⟨3,−5, 2 ∘ ⟨2, 4, 7 0; ⟨x, y, z ⟨ 9
22 ,− 21
22 , 0 t⟨−43,−17, 22;
22. 4x y − z 20 23. b. 15x 13y 10z 68; c. ⟨x, y, z ⟨3, 1, 1 t⟨2, 0,−3 24. The direction vector of L is a multiple of the normal vector to . 25. 8x 5y − 4z 2; they intersect at 118
105 , 62
21 , 571
105 26. ⟨x, y, z ⟨5,−2, 1 t⟨3, 7,−4; they intersect at 397
74 ,− 85
74 , 19
37 27. b. x 2z 12. 28. False: the converse is True, but the forward implication is False; u ∘ v 0 means the two
vectors are orthogonal to each other without one of them necessarily being 0 n.
1.4 Exercises
1. ⟨−3, 2, 6; all variables are leading 2. ⟨−9, 4, 0; all variables are leading 3. ⟨−3 − 7r, 2 4r, r, x3 r is free 4. ⟨6 3r, r,−7; x2 r is free 5. ⟨2,−5, r; x3 r is free 6. ⟨8 5r − 2s, r, s; x2 r and x3 s are free 7. ⟨3 5r,−4r,−2 7r, r; x4 r is free 8. ⟨5 − 3r, 6 2r, r,−4; x3 r is free 9. no solutions 10. ⟨5 4r, r,−3 − s, s; x2 r and x4 s are free 11. ⟨7 2r − 6s, r, s,−2; x2 r and x3 s are free 12.
5 3 2
3 r,− 7
3 − 4
3 r, 2
3 − 1
3 r, r ; x4 r is free
13. ⟨−5, 3, 2; all variables are leading 14. ⟨2 − 3r,−4 5r, r; x3 r is free 15. ⟨7 6r, r,−2; x2 r is free 16. ⟨5, 6,−4, 0; all variables are leading 17. ⟨4r, 3 − 7r,−8 − 3r, r; x4 r is free 18. ⟨1 6r, 5 − 4r, r,−4; x3 r is free 19. ⟨−2 5r, r, 3, 7; x2 r is free 20. ⟨−8 3r − 2s,−5 − 4r 6s, r, s; x3 r and x4 s
are free 21. ⟨−2 5r 9s, r,−6 − 4s, s; x2 r and x4 s are free 22. ⟨−5 − 7r − 5s, 2 4r − 3s, 4 − 6r 2s, r, s; x4 r and x5 s are free 23. ⟨5 − 3r 4s 6t,−1 2r 9s − 8t, r, s, t; x3 r, x4 s and x5 t are free. 24. ⟨−5 − 6r, 2 3r, 4 − 2r,−1 − 8r, r; x5 r is free 25. ⟨5 − 3r, 6 2r, r,−4, 9; x3 r is
free 26. ⟨2 − 6r − 3s, r, 7 8s, s,−3; x2 r and x4 s are free 27. ⟨−2 5r − 4s, r, 9 − 7s, 6 − 3s, s; x2 r and x5 s are free 28. no solutions 29. ⟨r, 2 3s, s,−7, 4; x1 r and x3 s are free 30. ⟨4 5r − 3s, 5 − 3r,−2 2r − 4s, 3 − 7r 6s, r, s; x5 r and x6 s are free 31. ⟨7 9r − 4s,−3r s, r,−1 − 6s, 2 − 5s, s; x3 r and x6 s are free 32. ⟨2 − 6r − 3s − 5t, r, 9 8s 2t, s, t,−1, x2 r, x4 s and x5 t are free 33. ⟨3 − 5r,−7 2r, r, 9, 4, x3 r is free 34. ⟨−2 4r − 7s, 5 − 6r 3s, r, 6 − 9s, s,
x3 r, x5 s are free 35. ⟨−2 8r s, 6 − 5r − 7s, r, 3 4s, 8 − 9s, s, x3 r, x6 s are free 36. ⟨−5 − 6r, 2 7r, 3 − 4r, r,−8, 9, x4 r is free 37. Yes, b 3v1 − 5v2 (only solution) 38. b is not in SpanS. 39. Yes. b 3v1 − 2v2 v3 (only solution) 40. Yes. b 1
2 v1 32 v2 (there are infinitely many solutions) 41. b
is not in SpanS.
Selected Answers to the Exercises 5
42. Yes. b 5v1 − 2v2 4v3 (only solution) 43. Yes. b −17v1 13v2 (there are infinitely many solutions)
44. Yes. b 3v1 − 2v2 5v3 (there are infinitely many solutions) 45. Yes. b −2v1 5v2 (there are infinitely many solutions) 46. Yes. b 2v1 − 7v2 3v4 (there are infinitely many solutions) 47. Yes.
b v1 − v2 2v3 (only solution) 48. Yes. b 5v1 − 4v2 (there are infinitely many solutions) 49. 0, 27
,− 3 7
50. 43 11
,− 8 11
,− 8 11
, 2 11
51. − 7 5
,− 8 5
,− 8 5
,− 7 5
52. −2s, 6s − 47 3
, 8 3
, s , where
x4 s ∈ . 53. ⟨−7,−1,−26, 31, 2, 7 54. 8 − 6r − 17t
4 , r,−7,−2 − t
4 , t,−1 , where x5 t ∈ .
55. 8 − 9s,− 1 4 25
4 s, 5 − 5s
4 , 3 4s, 8 − 9s, s , where x6 s ∈ . 56. ⟨5,−3,−9 57.
⟨11,−3, 4 58. ⟨−14,−2, 3, 2 59. ⟨−3 − 3r 4s, r,−2 − 2s, s, 2, x2 r ∈ , x4 s ∈ are free. 60. ⟨3 5r, r,−2, 4, y r ∈ is free. 61. ⟨3 − 5r,−7 2r, r, 4, z r ∈ is free. 62. No solutions. 63. One possible answer: ⟨x, y, z ⟨40, 22, 0 t⟨−43,−25, 2. 64. $1.50 per shirt, $5 per pair of slacks, and $7 per jacket. 65. 1 kilogram of Barley, 3 kilograms of Oats, and 2 kilogram of Soy.
66. The rref is 1 0 − 4
5 159 5
0 1 9 5
331 5
, so d 159 4p/5 and n 331 − 9p/5.
The solution with the smallest number of pennies has p 4, n 59, and d 35. (Note: since we want n ≥ 0, we need p ≤ 36) The solution with the largest number of pennies has p 34, n 5 and d 59.
1.5 Exercises
1. a. consistent, and b. square 2. a. consistent, and b. overdetermined 3. a. inconsistent, and b. overdetermined 4. a. consistent, and b. underdetermined 5. a. inconsistent, and b. underdetermined 6. a. consistent, and b. square 7. a. consistent, and b. square 8. a. consistent, and b. underdetermined. 9. a. consistent, and b. square. 10. a. inconsistent, and b. overdetermined. 11. independent 12. independent 13. dependent 14. dependent 15. dependent 16. independent 17. dependent 18. dependent: 2v1 − v2 v3 03.
6 Selected Answers to the Exercises
19. independent 20. independent 21. dependent: 2v1 − v2 5v3 04. 22. dependent: −4v1 − 7v2 v3 04. 23. dependent: −3v1 − v2 5v3 05. 24. dependent: −2v1 − 3v2 4v3 v4 05 25. a. − 2v1 − 3v2 v3 04 b. 5v1 7v2 v4 04 c. − v2 5v3 2v4 04 26. a. − 2v1 v2 v3 05 b. − 3v1 − 2v2 v4 05 c. − 7v2 − 3v3 2v4 05 27. a. − 3v1 − 5v2 6v3 v4 04 b. − 2v1 − 3v2 5v3 v5 04
c. − v1 7v3 − 3v4 5v5 04 28. a. − 4v1 − 5v2 v3 04 b. − 3v1 − 2v2 v4 2v5 04
c. 7v1 2v3 − 5v4 − 10v5 04 29. a. 5v1 2v2 05 b. 5v1 − 6v3 2v5 05 c. v3 v4 v5 05 30. dependent: 5 vectors in 4 must be dependent. 31. One possible dependence equation is: 32u v − 14u 5v− 4w − 2u − v 2w 0 n. 32. The system will have no solution if r −4 and s ≠ 7
2 . The system will have exactly one
solution if r ≠ −4 and s is any real number. The system will have an infinite number of solutions if r −4 and s 7
2 .
33. In all cases, x is a leading variable. The system will have no solution if s −8 and t ≠ 4. The system will have exactly one solution if s ≠ −8, t is any real number, and r ≠ −6. The system will have an infinite number of solutions involving exactly one free variable in two ways. First, if s −8, t 4, and r ≠ −6, then y is a leading variable and z is a free variable. If r −6, then z is automatically a leading variable because of the 2nd equation, and z − 13
10 . This will satisfy the 3rd equation if and only if 8 s − 13
10 t − 4, so
10t 13s −144. Thus, the second way is to have r −6 and s and t any two real numbers satisfying 10t 13s −144. In this case, y is a free variable. The system will never have an infinite number of solutions involving exactly two free variables.
34. c 22 46. a. False. b. False. c. True. d. False e. True. f. False. g. True. h. False. i. True. j.
False.
1.6 Exercises
1. The corresponding pairs of vectors are parallel to each other. 2. If we denote by S v1, v2 and S/ w 1, w 2, w 3, then we will get:
v1 35 w 1 15
w 2, v2 15 w 1 − 35
w 2, w 1 32 v1 12
v2, w 2 12 v1 − 32
v2,
w 3 2v1 − v2. 3. We should apply the Equality of Spans Theorem; if S v1, v2 and S/ w 1, w 2, then
we will get: v1 13
w 1 23 w 2, v2 53
w 1 163 w 2, w 1 8v1 − v2, w 2 − 52
v1 12 v2.
4. Although both Theorems are applicable, the first Theorem will certainly be easier to apply: corresponding pairs of vectors are parallel to each other.
5. a. S consists of 6 vectors from 3, so S is certainly dependent. b. v2 and v4 are parallel
Selected Answers to the Exercises 7
to v1. c. Eliminate v2 and v4, to get: S / v1, v3, v5, v6 . You could also eliminate v1 and v2 and keep v4, or eliminate the v1 and v4 and keep v2. d. v5 53
v1 2v3. e.
Eliminate either v1 or v3 or v5 to get a set with 3 vectors left. One possible answer is S // v1, v3, v6 . f. The rref of the 3 3 matrix you obtained should not have any free variables.
6. a. S consists of 5 vectors from 4, so S is certainly dependent. b. v4 is parallel to v2. c. Eliminate either v2 or v4, so one possible answer is: S / v1, v2, v3, v5 d. v3 3v1 − 2v2 and v5 2v1 v2. e. two vectors are left; one possible answer is: S // v1, v2 . f. the two vectors (no matter which you picked) are obviously not parallel.
7. a, b and d only. 8. a, d and e only. 9. a, b, c, d and f only. 10. S / v1, v2, v3 ; v4 3v1 2v2 − 4v3. 11. S / v1, v2 ; v3 3v1 − 2v2 ; v4 2v1 3v2. 12. S / v1, v3 ; v2 −5v1; v4 3v1 5v3. 13. S / v1, v2, v3 ; v4 3v1 4v2 − 2v3 ; v5 2v1 3v2 − v3 . 14. S / v1, v2, v4 ; v3 4v1 7v2; v5 3v1 4v2 − 2v4 . 15. S / v1, v3, v4 ; v2 −4v1; v5 12
v1 − 32 v3 12
v4 .
16. S / v1, v3, v5 ; v2 3v1; v4 4v1 2v3. 17. S / v1, v2 ; v3 4v1 3v2; v4 −v1 2v2; v5 −2v1 − v2. 18. S / v1, v2 ; v3 2v1 − 3v2. 19. S / v1, v2, v3 . 20. S / v1, v2 ; v3 v1 2v2; v4 −6v1 5v2. 21. S / v1, v2, v4 ; v3 5v1 7v2. 22. S / v1, v3 ; v2 −3v1; v4 5v1 4v3. 23. S / v1, v2, v4 ; v3 52
v1 92 v2; v5 v1 7v2 5v4 .
24. S / v1, v2, v3, v5; v4 5v1 4v2 − 2v3. 25. S / v1, v2, v3 ; v4 5v1 4v2 − 2v3; v5 7v1 5v2 − 4v3. 26. S / v1, v2 ; v3 17
v1 − 57 v2.
27. S / v1, v2, v3 . 28. S / v1, v2 ; v3 47
v1 297 v2; v4 17
v1 − 57 v2.
29. S / v1, v2, v4 ; v3 5v1 8v2. 30. S / v1, v2, v3 ; v4 2v1 − 3v2 − 4v3. 31. S / v1, v3, v5 ; v2 16
v1; v4 76 v1 − 9v3.
32. S / v1, v2, v4 ; v3 −6v1 5v2; v5 5v1 − 3v2. 33. S / v1, v2, v4, v5 ; v3 5v1 8v2. 34. S / v1, v2, v4 ; v3 7v1 − 9v2 ; v5 2v1 v2 5v4; v6 4v1 − 6v2 − 3v4. 35. S / v1, v3, v6 ; v2 −4v1; v4 5/3v1; v5 5/3v1 2v3. 36. S / v1, v2; v3 3v1 − 2v2; v4 −5v2; v5 2v1 v2. 37. S / v1, v2; v3 −2/3v1 7/3v2; v4 1/3v1 1/3v2;
v5 −1/3v1 2/3v2.
8 Selected Answers to the Exercises
38. S / v1, v2, v4 ; v3 − 32 v2; v5 12
v2 v4.
39. S / v1, v2, v4 ; v3 2v1 − 4v2; v5 2v1 − 3v2. 40. S / v1, v2, v4, v5 ; v3 7v1 − 4v2; v6 6v1 − 7v2 3v4 − 5v5. 41. S / v1, v2, v4 ; v3 5v1 8v2; v5 5v1 7v2 4v4; v6 4v1 3v2 2v4. 42. S / v1, v2; v3 −2v1; v4 −v1 v2; v5 −2v1 5v2. 43. S / v1, v2, v4 ; v3 4v1 3v2; v5 2v1 5v2 3v4 44. S / v1, v2, v3, v5 ; v4 3v1 4v2 − 2v3; v6 4v1 2v2 − 3v3 − 5v5. 45. S / v1, v2, v3, v5, v6 ; v4 5v1 3v2 − 2v3. 46. a. Two non-parallel vectors are independent. b. x 2z 0. c. only e2 is in SpanS
d. Yes, because e1 ∉ SpanS. d. No, because e2 ∈ SpanS. e. Yes, because e3 ∉ SpanS.
47. b. Yes. c. No. d. No. e. Yes. 48. b.
1 0 0 0 −2 0 0 1 −1
0 1 0 0 5 2
0 0 − 37 26
27 26
0 0 1 0 1 2
0 0 − 7 26
3 26
0 0 0 1 0 0 0 8 13
17 13
0 0 0 0 0 1 0 6 13
16 13
0 0 0 0 0 0 1 7 13
− 16 13
c. independent d. dependent e. independent f. independent g. independent 53. a. False. b. True. c. False. d. True. e. False. f. False. g. False. h. False. i. False.
1.7 Exercises
1. ⟨7, 5. 2. It doesn’t contain the origin. 3. ⟨7, 3, 0,⟨0, 4, 7 is one possibility (you can also use ⟨4, 0,−3 as a second vector. 4. ⟨5, 0, 2,⟨0, 1, 0 5. It doesn’t contain the origin. 6. v1, v2, v4 ; dimW 3 7. v1, v2, v3 ; dimW 3 8. v1, v3, v6 ; dimW 3 9. v1, v2, v4 ; dimW 3 10. v1, v2, v4, v5 ; dimW 4 11. v1, v2, v4 ; dimW 3 12. v1, v3, v6 ; dimW 3 13. v1, v2; dimW 2 14. ⟨5,−3, 6, 7, ⟨3,−1, 4, 5; dimW 2 15. ⟨5,−3, 6, 7, ⟨3,−1, 4, 5, ⟨5, 1, 8,−3; dimW 3 16. ⟨5,−3, 6, 7, ⟨3,−1, 4, 5, ⟨1, 3,−1, 1; dimW 3 17. ⟨7, 5,−4, 3, 9, ⟨4, 3,−2, 1, 5; dimW 2 18. ⟨7, 5,−4, 3, 9, ⟨4, 3,−2, 1, 5, ⟨4, 3,−5, 9, 5; dimW 3 19. ⟨7, 5,−4, 3, 9, ⟨4, 3,−2, 1, 5, ⟨4, 3,−5, 4, 5; dimW 3 20. ⟨5,−3, 7,−4, 6, 3, ⟨9,−7, 8,−9, 4, 7, ⟨4,−5,−3,−6,−7, 5; dimW 3 21. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨−4, 1,−3,−8, 5, 1; dimW 3
Selected Answers to the Exercises 9
22. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨6,−4, 3,−9,−2, 5, ⟨−4, 1,−3,−8, 5, 1; dimW 4
23. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨−4, 1,−3,−2, 4,−1; dimW 3 24. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨8,−4, 3,−9,−2, 5, ⟨−4, 1,−3,−2, 4,−1;
dimW 4 25. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨5,−3, 2,−8,−1, 4, ⟨8,−4, 3,−9,−2, 5, ⟨−4, 1,−3,−2, 4
dimW 5 26. the xz-plane. ⟨1, 0, 0, ⟨0, 0, 1; dimW 2 27. the x-axis. ⟨1, 0, 0; dimW 1 28. W is not a subspace. It is not closed under addition. 29. ⟨5, 0, 1, 0, ⟨0,−1, 0, 1; dimW 2 30. ⟨0, 5, 1, 0, 0, ⟨0, 6, 0, 1, 0, ⟨−7, 0, 0, 0, 1; dimW 3 31. It does not contain the origin. 32. W is not a subspace, because it is not closed under scalar multiplication.
1.8 Exercises
1. rowspaceA: ⟨1, 0, 0, 3,⟨0, 1, 0, 2,⟨0, 0, 1,−4; colspaceA: ⟨2,−3, 4,⟨−3, 0,−5,⟨3,−1,−2; nullspaceA: ⟨−3,−2, 4, 1; nullspaceA 03 ; rankA 3 rankA; nullityA 1; nullityA 1; 3 1 4 and 3 0 3; ⟨2,−3, 3,−12 2⟨1, 0, 0, 3 − 3⟨0, 1, 0, 2 3⟨0, 0, 1,−4 ⟨−3, 0,−1,−5 −3⟨1, 0, 0, 3 − ⟨0, 0, 1,−4; ⟨4,−5,−2, 10 4⟨1, 0, 0, 3 − 5⟨0, 1, 0, 2 − 2⟨0, 0, 1,−4
2. rowspaceA: ⟨1,−5, 0, 3,⟨0, 0, 1, 5; colspaceA: ⟨−2, 4,−3,⟨3,−2, 4; nullspaceA: ⟨5, 1, 0, 0,⟨−3, 0,−5, 1; nullspaceA: ⟨−10, 1, 8; rankA 2 rankA; nullityA 2; nullityA 1; 2 2 4 and 2 1 3; ⟨−2, 10, 3, 9 −2⟨1,−5, 0, 3 3⟨0, 0, 1, 5 ⟨4,−20,−2, 2 −4⟨1,−5, 0, 3 − 2⟨0, 0, 1, 5; ⟨−3, 15, 4, 11 −3⟨1,−5, 0, 3 4⟨0, 0, 1, 5
3. rowspaceA: ⟨1, 0, 4, 0, 3,⟨0, 1, 7, 0, 4,⟨0, 0, 0, 1,−2; colspaceA: ⟨5,−2, 3,⟨−2, 3,−4,⟨−1,−3, 2; nullspaceA: ⟨−4,−7, 1, 0, 0,⟨−3,−4, 0, 2, 1; nullspaceA 03 ; rankA 3 rankA; nullityA 2; nullityA 0; 3 2 5 and 3 0 3; ⟨5,−2, 6,−1, 9 5⟨1, 0, 4, 0, 3 − 2⟨0, 1, 7, 0, 4 − ⟨0, 0, 0, 1,−2 ⟨−2, 3, 13,−3, 12 −2⟨1, 0, 4, 0, 3 3⟨0, 1, 7, 0, 4 − 3⟨0, 0, 0, 1,−2 ⟨3,−4,−16, 2,−11 3⟨1, 0, 4, 0, 3 − 4⟨0, 1, 7, 0, 4 2⟨0, 0, 0, 1,−2
4. rowspaceA: ⟨1, 3, 0, 4, 0,⟨0, 0, 1, 2, 0,⟨0, 0, 0, 0, 1; colspaceA: ⟨−1,−3, 2,⟨−2, 3,−4,⟨5,−2, 3; nullspaceA: ⟨−3, 1, 0, 0, 0,⟨−4, 0,−2, 1, 0; nullspaceA 03 ; rankA 3 rankA; nullityA 2; nullityA 0; 3 2 5 and 3 0 3; ⟨−1,−3,−2,−8, 5 −⟨1, 3, 0, 4, 0 − 2⟨0, 0, 1, 2, 0 5⟨0, 0, 0, 0, 1 ⟨−3,−9, 3,−6,−2 −3⟨1, 3, 0, 4, 0 3⟨0, 0, 1, 2, 0 − 2⟨0, 0, 0, 0, 1
10 Selected Answers to the Exercises
⟨2, 6,−4, 0, 3 2⟨1, 3, 0, 4, 0 − 4⟨0, 0, 1, 2, 0 3⟨0, 0, 0, 0, 1 5. rowspaceA: ⟨1, 0, 4,−1,−2,⟨0, 1, 3, 2,−1; colspaceA: ⟨−2, 3,−5,⟨5,−2, 3;
nullspaceA: ⟨−4,−3, 1, 0, 0,⟨1,−2, 0, 1, 0,⟨2, 1, 0, 0, 1; nullspaceA: ⟨1, 19, 11; rankA 2 rankA; nullityA 3; nullityA 1; 2 3 5 and 2 1 3; ⟨−2, 5, 7, 12,−1 −2⟨1, 0, 4,−1,−2 5⟨0, 1, 3, 2,−1; ⟨3,−2, 6,−7,−4 3⟨1, 0, 4,−1,−2 − 2⟨0, 1, 3, 2,−1 ⟨−5, 3,−11, 11, 7 −5⟨1, 0, 4,−1,−2 3⟨0, 1, 3, 2,−1
6. rowspaceA: ⟨1, 0, 0,⟨0, 1, 0,⟨0, 0, 1; colspaceA: ⟨3, 7, 1,−9,⟨−2,−4, 0,−5,⟨5,−6, 8, 2; nullspaceA 03 ; nullspaceA: ⟨−14, 243, 141, 200; rankA 3 rankA; nullityA 0; nullityA 1; 2 2 4 and 2 2 4; ⟨3,−2, 5 3⟨1, 0, 0 − 2⟨0, 1, 0 5⟨0, 0, 1; ⟨7, 4,−6 7⟨1, 0, 0 4⟨0, 1, 0 − 6⟨0, 0, 1 ⟨1, 0, 8 1⟨1, 0, 0 8⟨0, 0, 1; ⟨−9,−5, 2 −9⟨1, 0, 0 − 5⟨0, 1, 0 2⟨0, 0, 1
7. rowspaceA: ⟨1, 0, 1,−6,⟨0, 1, 2, 5; colspaceA: ⟨2, 1,−2,−2,⟨3,−2, 1,−4; nullspaceA: ⟨−1,−2, 1, 0,⟨6,−5, 0, 1; nullspaceA: ⟨3, 8, 7, 0,⟨8,−2, 0, 7; rankA 2 rankA; nullityA 2; nullityA 2; 2 2 4 and 2 2 4; ⟨2, 3, 8, 3 2⟨1, 0, 1,−6 3⟨0, 1, 2, 5; ⟨1,−2,−3,−16 ⟨1, 0, 1,−6 − 2⟨0, 1, 2, 5 ⟨−2, 1, 0, 17 −2⟨1, 0, 1,−6 ⟨0, 1, 2, 5; ⟨−2,−4,−10,−8 −2⟨1, 0, 1,−6 − 4⟨0, 1, 2, 5
8. rowspaceA: ⟨1,−3, 0, 5,⟨0, 0, 1, 4; colspaceA: ⟨−3, 7, 5, 4,⟨1,−4, 2,−3; nullspaceA: ⟨3, 1, 0, 0,⟨−5, 0,−4, 1; nullspaceA: ⟨34, 11, 5, 0,⟨−1,−1, 0, 1; rankA 2 rankA; nullityA 2; nullityA 2; 2 2 4 and 2 2 4; ⟨−3, 9, 1,−11 −3⟨1,−3, 0, 5 ⟨0, 0, 1, 4; ⟨7,−21,−4, 19 7⟨1,−3, 0, 5 − 4⟨0, 0, 1, 4 ⟨5,−15, 2, 33 5⟨1,−3, 0, 5 2⟨0, 0, 1, 4; ⟨4,−12,−3, 8 4⟨1,−3, 0, 5 − 3⟨0, 0, 1, 4
9. rowspaceA: ⟨2, 0, 5, 0, 2,⟨0, 2, 9, 0, 14,⟨0, 0, 0, 1, 5; colspaceA: ⟨0,−7, 8,−2,⟨2, 1,−2,−2,⟨−4, 3,−1, 6; nullspaceA: ⟨−5,−9, 2, 0, 0,⟨−1,−7, 0,−5, 1; nullspaceA: ⟨4,−6,−4, 5; rankA 3 rankA; nullityA 2; nullityA 1; 3 2 5 and 3 1 4; ⟨0, 2, 9,−4,−6 ⟨0, 2, 9, 0, 14 − 4⟨0, 0, 0, 1, 5; ⟨−7, 1,−13, 3, 15 − 7
2 ⟨2, 0, 5, 0, 2 1
2 ⟨0, 2, 9, 0, 14 3⟨0, 0, 0, 1, 5
⟨8,−2, 11,−1,−11 4⟨2, 0, 5, 0, 2 − ⟨0, 2, 9, 0, 14 − ⟨0, 0, 0, 1, 5 ⟨−2,−2,−14, 6, 14 −⟨2, 0, 5, 0, 2 − ⟨0, 2, 9, 0, 14 6⟨0, 0, 0, 1, 5
10. rowspaceA: ⟨1, 0, 0, 5, 7,⟨0, 1, 0, 4, 5,⟨0, 0, 1,−2,−4; colspaceA: ⟨3, 7, 1,−9,⟨−2,−4, 0, 6,⟨5, 6, 3,−9; nullspaceA: ⟨−5,−4, 2, 1, 0,⟨−7,−5, 4, 0, 1; nullspaceA: ⟨9, 6,−6, 7; rankA 3 rankA; nullityA 2; nullityA 1; 3 2 5 and 3 1 4; ⟨3,−2, 5,−3,−9 3⟨1, 0, 0, 5, 7 − 2⟨0, 1, 0, 4, 5 5⟨0, 0, 1,−2,−4 ⟨7,−4, 6, 7, 5 7⟨1, 0, 0, 5, 7 − 4⟨0, 1, 0, 4, 5 6⟨0, 0, 1,−2,−4 ⟨1, 0, 3,−1,−5 ⟨1, 0, 0, 5, 7 3⟨0, 0, 1,−2,−4; ⟨−9, 6,−9,−3, 3 −9⟨1, 0, 0, 5, 7 6⟨0, 1, 0, 4, 5 − 9⟨0, 0, 1,−2,−4
11. rowspaceA: ⟨7, 0, 4, 1,⟨0, 7, 29,−5; colspaceA: ⟨15,−3, 13,−9,−11,⟨3,−2, 4, 1, 2; nullspaceA: ⟨−4,−29, 7, 0,⟨−1, 5, 0, 7; nullspaceA: ⟨−2, 3, 3, 0, 0,⟨1, 2, 0, 1, 0,⟨4, 9, 0, 0, 3; rankA 2 rankA; nullityA 2; nullityA 3; 2 2 4 and 2 3 5;
Selected Answers to the Exercises 11
⟨15, 3, 21, 0 15 7 ⟨7, 0, 4, 1 3
7 ⟨0, 7, 29,−5;
⟨−3,−2,−10, 1 −3 7 ⟨7, 0, 4, 1 − 2
7 ⟨0, 7, 29,−5
⟨13, 4, 24,−1 13 7 ⟨7, 0, 4, 1 4
7 ⟨0, 7, 29,−5;
⟨−9, 1,−1,−2 −9 7 ⟨7, 0, 4, 1 1
7 ⟨0, 7, 29,−5
⟨−11, 2, 2,−3 −11 7
⟨7, 0, 4, 1 2 7 ⟨0, 7, 29,−5
12. rowspaceA: ⟨1, 0, 5, 0,⟨0, 1, 8, 0,⟨0, 0, 0, 1; colspaceA: ⟨3,−2,−1, 2,⟨7,−4, 3, 6,⟨1, 0, 5, 1; nullspaceA: ⟨−5,−8, 1, 0; nullspaceA: ⟨−1, 2,−2, 1, 0,⟨23,−13, 14, 0, 2; rankA 3 rankA; nullityA 1; nullityA 2; 3 1 4 and 3 2 5; ⟨3,−2,−1, 2 3⟨1, 0, 5, 0 − 2⟨0, 1, 8, 0 2⟨0, 0, 0, 1; ⟨7,−4, 3, 6 7⟨1, 0, 5, 0 − 4⟨0, 1, 8, 0 6⟨0, 0, 0, 1 ⟨1, 0, 5, 1 ⟨1, 0, 5, 0 ⟨0, 0, 0, 1; ⟨−9, 6, 3,−8 −9⟨1, 0, 5, 0 6⟨0, 1, 8, 0 − 8⟨0, 0, 0, 1 ⟨4,−3,−4, 9 4⟨1, 0, 5, 0 − 3⟨0, 1, 8, 0 9⟨0, 0, 0, 1
13. rowspaceA: ⟨1, 0, 0, 2,⟨0, 1, 0,−3,⟨0, 0, 1,−4; colspaceA: ⟨5,−3, 3,−9,−1,⟨3,−2, 4, 1, 2,⟨2,−1, 3,−1, 2; nullspaceA: ⟨−2, 3, 4, 1; nullspaceA: ⟨30, 29,−9, 4,⟨2,−3,−5, 0, 4; rankA 3 rankA; nullityA 1; nullityA 2; 3 1 4 and 3 2 5; ⟨5, 3, 2,−7 5⟨1, 0, 0, 2 3⟨0, 1, 0,−3 2⟨0, 0, 1,−4; ⟨−3,−2,−1, 4 −3⟨1, 0, 0, 2 − 2⟨0, 1, 0,−3 − ⟨0, 0, 1,−4 ⟨3, 4, 3,−18 3⟨1, 0, 0, 2 4⟨0, 1, 0,−3 3⟨0, 0, 1,−4; ⟨−9, 1,−1,−17 −9⟨1, 0, 0, 2 ⟨0, 1, 0,−3 − ⟨0, 0, 1,−4 ⟨−1, 2, 2,−16 −1⟨1, 0, 0, 2 2⟨0, 1, 0,−3 2⟨0, 0, 1,−4
14. rowspaceA: ⟨6, 1, 0, 7, 0,⟨0, 0, 1,−9, 0,⟨0, 0, 0, 0, 1; colspaceA: ⟨12,−6, 18,−6, 12,⟨3,−2, 4, 1, 2,⟨5,−3, 0, 7,−1; nullspaceA: ⟨−1, 6, 0, 0, 0,⟨−7, 0, 54, 6, 0; nullspaceA Span⟨1, 4, 1, 1, 0,⟨−4,−9,−5, 0, 7; rankA 3 rankA; nullityA 2; nullityA 2; 3 2 5 and 3 2 5; ⟨12, 2, 3,−13, 5 2⟨6, 1, 0, 7, 0 3⟨0, 0, 1,−9, 0 5⟨0, 0, 0, 0, 1 ⟨−6,−1,−2, 11,−3 −⟨6, 1, 0, 7, 0 − 2⟨0, 0, 1,−9, 0 − 3⟨0, 0, 0, 0, 1 ⟨18, 3, 4,−15, 0 3⟨6, 1, 0, 7, 0 4⟨0, 0, 1,−9, 0; ⟨−6,−1, 1,−16, 7 −6⟨6, 1, 0, 7, 0 ⟨0, 0, 1,−9, 0 7⟨0, 0, 0, 0, 1 ⟨12, 2, 2,−4,−1 2 1, 1
6 , 0, 7
6 , 0 2⟨0, 0, 1,−9, 0 − ⟨0, 0, 0, 0, 1
15. rowspaceA: ⟨1, 0, 5, 0, 0,⟨0, 1, 8, 0, 0,⟨0, 0, 0, 1, 0,⟨0, 0, 0, 0, 1; colspaceA: ⟨3, 7, 1,−9, 4,⟨−2,−4, 0, 6,−3,⟨2, 6, 1,−8, 9,⟨5, 6, 3,−9, 7; nullspaceA: ⟨−5,−8, 1, 0, 0; nullspaceA: ⟨91, 82,−74, 93, 16; rankA 4 rankA; nullityA 1 nullityA; 4 1 5 for both matrices; ⟨3,−2,−1, 2, 5 3⟨1, 0, 5, 0, 0 − 2⟨0, 1, 8, 0, 0 2⟨0, 0, 0, 1, 0 5⟨0, 0, 0, 0, 1 ⟨7,−4, 3, 6, 6 7⟨1, 0, 5, 0, 0 − 4⟨0, 1, 8, 0, 0 6⟨0, 0, 0, 1, 0 6⟨0, 0, 0, 0, 1 ⟨1, 0, 5, 1, 3 ⟨1, 0, 5, 0, 0 5⟨0, 0, 0, 1, 0 3⟨0, 0, 0, 0, 1 ⟨−9, 6, 3,−8,−9 9⟨1, 0, 5, 0, 0 − 6⟨0, 1, 8, 0, 0 − 8⟨0, 0, 0, 1, 0 − 9⟨0, 0, 0, 0, 1 ⟨4,−3,−4, 9, 7 4⟨1, 0, 5, 0, 0 − 3⟨0, 1, 8, 0, 0 9⟨0, 0, 0, 1, 0 7⟨0, 0, 0, 0, 1
16. rowspaceA: ⟨1, 0, 7, 0, 2, 4,⟨0, 1,−9, 0, 1,−6,⟨0, 0, 0, 1, 5,−3; colspaceA: ⟨2,−1, 3,−1, 2,⟨3,−2, 4, 1, 2,⟨1,−3, 2,−2,−1;