Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

A portrait of linear algebra 3rd edition pdf

14/10/2021 Client: muhammad11 Deadline: 2 Day

Linear Algebra

Chapter Zero Exercises

1. A True logical statement. 2. A logical statement, but it is False, because −5  3 but 25  9. 3. A True logical statement, using the properties of inequalities found in Appendix A. 4. A False logical statement, because if x  0, then x is imaginary. 5. A True logical statement as of June 2009, with 237 consecutive weeks. 6. Not a logical statement, because it cannot be ascertained to be True or False (“best” is not

a well-defined adjective; unlike the previous Exercise, where “most number of consecutive weeks as number 1” is well defined).

7. Converse: If you can watch TV tonight, then you did your homework before dinner. Inverse: If you do not do your homework before dinner, you cannot watch TV tonight. Contrapositive: If you cannot watch TV tonight, then you did not do your homework before dinner.

8. Converse: If we don’t go to the beach tomorrow, then it rained. Inverse: If it doesn’t rain tomorrow, we will go to the beach. Contrapositive: If we go to the beach tomorrow, then it did not rain.

9. Converse: If cosx ≥ 0, then 0 ≤ x ≤ /2. Inverse: If x  /2 or x  0, then cosx  0. Contrapositive: If cosx  0, then x  /2 or x  0.

10. If fx is continuous on the closed interval a, b then it possesses both a maximum and a minimum on a, b. Converse: If fx possesses both a maximum and a minimum on a, b, then fx is continuous on a, b. Inverse: If fx is not continuous on a, b, then fx either does not possess an absolute maximum or an absolute minimum on a, b. Contrapositive: If fx does not possess either an absolute maximum or an absolute minimum on a, b, then fx is not continuous at x  a.

11. A  B  a, b, c, f, g, h, i, j, m, p, q, A ∩ B  c, h, j, A − B  a, f, i, m, B − A  b, g, p, q.

12. A  B  a, b, d, g, h, j, k, p, q, r, s, t, v, A ∩ B  d, g, h, p, t, A − B  a, j, r, B − A  b, k, q, s, v.

23. If there were a largest positive number x, what can you say about x  1? 27. “If n does not have a prime factor which is at most n , then n is prime.” The number

11303 is composite. One prime factor is smaller than 100. 38. 2027 and 2029. 39. 233 49. Hint: In Step 3, write 2n1 as 22n  2n  2n. 54. f. For any two sets X and Y : X ∩ Y ⊆ X and X ∩ Y ⊆ Y. 55. a.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29 58. a. ∅, a, b, c, a, b, a, c, b, c, a, b, c; 8 subsets.

c. you get exactly the same list as the subsets on the right column.

2 Selected Answers to the Exercises

Chapter One Exercises

1.1 Exercises

1. These are found in the Key Concepts. 2. b. ‖u‖  65 ; c. u1  1

65 ⟨−4, 7 and u2  −1

65 ⟨−4, 7 d. 3v  ⟨9, 15,

5w  ⟨5,−10, v  5w  ⟨14, 5 and 3v− 5w  ⟨4, 25 3. b. 2u  ⟨10,−6, 4, 3w  ⟨−6, 15, 12, 2u  3w  ⟨4, 9, 16 and 2u − 3w  ⟨16,−21,−8

c. ‖w‖  45  3 5 d. u1  1 3 5

⟨−2, 5, 4 and u1  −1 3 5

⟨−2, 5, 4.

e. i. − 3 5

w  ⟨6/5,−3,−12/5 ii. 2u  5v  ⟨30,−6,−31 iii. 3w − 4u  ⟨−26, 27, 4 iv. −4u  7v− 2w  ⟨12, 2,−65.

4. a. u  v  ⟨1,−2, 7, 3 b. u  w  ⟨−1,−3, 4,−2 c. v− w  ⟨2, 1, 3, 5 d. − 2u  ⟨−6, 10,−2,−14 e. 3

4 v  − 3

2 , 9

4 , 9

2 ,−3 f. − 5

3 w  20

3 ,− 10

3 ,−5, 15

g. 5u  3v  ⟨9,−16, 23, 23 h. − 3 2

u  5 4

v  −7, 45 4

, 6,− 31 2

i. 2u − 3v  7w  ⟨−16,−5, 5,−37 j. − 5u  2v− 4w  ⟨−3, 23,−5,−7 k. − 3

2 u  3

4 v− 5

3 w  2

3 , 77

12 ,−2, 3

2 l. 3

2 u − 3

4 v  2w  −2,− 23

4 , 3,− 9

2 5. u  ⟨−15, 6, 7 and v  ⟨42,−17,−16. 6. Yes: ⟨−3, 7  40⟨5,−2  29⟨−7, 3. 7. Yes: ⟨−17,−9, 29,−37  5⟨3,−5, 1, 7  8⟨−4, 2, 3,−9. 8. No: Using the first two coordinates, we get x  −4 and y  9, but although these satisfy

the 3rd coordinate, they do not satisfy the 4th. 9. u  ⟨−3, 4, 2, 6,−7 and v  ⟨−1,−3, 5,−3, 2. 10. 7,−3 11. −4, 1, 7 12. u  ⟨−4, 4,−8 22. Contrapositive: if u  ⟨u1, u2 and v  ⟨v1, v2 are vectors in 2, then they are not

parallel to each other if and only if u1v2 − u2v1 ≠ 0. 35. PQ is 26 cm. long.

1.2 Exercises

1. y  4x/7 2. y  −5x/3 3. x  5t, y  −4t, z  2t, and t  x/5  y/−4  z/2. 4. x  −t, y  3t, z  −6t, and t  −x  y/3  z/−6. 5. 7x  5y  6 6. x  2 − 3t, y  −7  6t, z  4  8t, and t  x − 2

−3 

y  7 6

 z − 4 8

7. x  3  2t, y  2, z  −5 − 5t. Not possible because the direction vector has 0 in the y-component.

8. v  PQ  ⟨4,−2, 3, so x  −4  4t, y  3 − 2t, z  −5  3t is one possible answer (other answers are possible).

9. 2x − 11y  z  0. 10. 31x − 29y − 13z  0. 11. 10x − 2y  15z  0. We must solve for s from y, solve for r from z, then substitute these

into x. 12. Span⟨4,−10, 6,⟨−6, 15,−9 is only a line through the origin, because the vectors are

parallel to each other. 13. x  y  z  3 14. 9x  10y − 2z  28

Selected Answers to the Exercises 3

15. They determine a line because the vector AB is parallel to AC. 17. 3,−4, 7 satisfies the equation. If t  1, we get the point 7,−7, 13, which also satisfies

the equation. Since two points on the line are also on the plane, the whole line is on the plane. Alternatively, you can solve for x, y and z from the equation of the line, and substitute them into that of the plane, and get 0  0, showing that the equation of the plane is satisfied by every point on the line.

18. If Q  3, 4,−1, then PQ  ⟨1,−1,−8 is not parallel to ⟨1,−2, 5, so P is not on L. Equation: 21x  13y  z  114.

19. 7x  2y  4z  15 20. − 65 29

, 21 29

, 52 29

23. a. the point does not satisfy the symmetric equations; b. x − 5 3

 y  2

5  −z  4

24. 13x − 7y  4z  95 25. 17x − 4y  22z  −80 28. 28. a. 2x  6y  3z  0; b. w does not satisfy this equation. 33. d. 6x − 5y  4z  60; g. 3x − 2z  18 i. z  −5 34. a. D  at  x0 − x12  bt  y0 − y12  ct  z0 − z12

b. dD dt

 2t  ax0 − x1  by0 − y1  cz0 − z1

c. t  ax1 − x0  by1 − y0  cz1 − z0; d. d 2D

dt2  2  0.

e. the critical point is a local minimum by the 2nd derivative test; since D goes to positive infinity in both directions, the critical point is also an absolute maximum.

35. The critical value is t  −3 66

; 53 11

,− 67 22

, 51 22

; distance: 7 22

374

36. The critical value is t  14 30

; 98 15

, 7 3

,− 46 15

; distance: 1 15

25530

1.3 Exercises

1. ‖u‖  119 . 2. 2. cos  5/ 3161 and  ≈ 1. 481 radians. 3. ‖2u  5v‖  941 ≈ 32. 68, and ‖2u‖  ‖5v‖  136  1625 ≈ 51. 97. The second

quantity should be bigger by the Triangle Inequality. 4. cos  37/ 6391 , so  ≈ 1. 09 radians. 5. cos  −15/ 7 23 , so  ≈ 2. 034 radians. 6. cos−1 1/ 3  54. 73560

7. 71. 06820, 60. 87840, 35. 79580

8. −2911 9. 4569 10. 7837 11. 24 12. ‖u‖  29, ‖v‖  13, and ‖4u  9v‖  2305 13. 6x − 5y  2z  −15. 14. 2x  5y − 9z  40 15. Take the dot product with both u and v. 16. a. 13, 3, 6 b. 5x  13y  z  110 17. x  y − z  10; they intersect at 2, 5,−3.

4 Selected Answers to the Exercises

18. ⟨x, y, z  ⟨5,−3, 7  t⟨9, 22, 17; they intersect at 97 14

, 12 7

, 149 14

.

19. c. 7x  5y − 3z  50 20. c. 7x  11y − 13z  46 and 7x  11y − 13z  104 21. ⟨3,−5, 2 ∘ ⟨2, 4, 7  0; ⟨x, y, z  ⟨ 9

22 ,− 21

22 , 0  t⟨−43,−17, 22;

22. 4x  y − z  20 23. b. 15x  13y  10z  68; c. ⟨x, y, z  ⟨3, 1, 1  t⟨2, 0,−3 24. The direction vector of L is a multiple of the normal vector to . 25. 8x  5y − 4z  2; they intersect at 118

105 , 62

21 , 571

105 26. ⟨x, y, z  ⟨5,−2, 1  t⟨3, 7,−4; they intersect at 397

74 ,− 85

74 , 19

37 27. b. x  2z  12. 28. False: the converse is True, but the forward implication is False; u ∘ v  0 means the two

vectors are orthogonal to each other without one of them necessarily being 0 n.

1.4 Exercises

1. ⟨−3, 2, 6; all variables are leading 2. ⟨−9, 4, 0; all variables are leading 3. ⟨−3 − 7r, 2  4r, r, x3  r is free 4. ⟨6  3r, r,−7; x2  r is free 5. ⟨2,−5, r; x3  r is free 6. ⟨8  5r − 2s, r, s; x2  r and x3  s are free 7. ⟨3  5r,−4r,−2  7r, r; x4  r is free 8. ⟨5 − 3r, 6  2r, r,−4; x3  r is free 9. no solutions 10. ⟨5  4r, r,−3 − s, s; x2  r and x4  s are free 11. ⟨7  2r − 6s, r, s,−2; x2  r and x3  s are free 12.

5 3  2

3 r,− 7

3 − 4

3 r, 2

3 − 1

3 r, r ; x4  r is free

13. ⟨−5, 3, 2; all variables are leading 14. ⟨2 − 3r,−4  5r, r; x3  r is free 15. ⟨7  6r, r,−2; x2  r is free 16. ⟨5, 6,−4, 0; all variables are leading 17. ⟨4r, 3 − 7r,−8 − 3r, r; x4  r is free 18. ⟨1  6r, 5 − 4r, r,−4; x3  r is free 19. ⟨−2  5r, r, 3, 7; x2  r is free 20. ⟨−8  3r − 2s,−5 − 4r  6s, r, s; x3  r and x4  s

are free 21. ⟨−2  5r  9s, r,−6 − 4s, s; x2  r and x4  s are free 22. ⟨−5 − 7r − 5s, 2  4r − 3s, 4 − 6r  2s, r, s; x4  r and x5  s are free 23. ⟨5 − 3r  4s  6t,−1  2r  9s − 8t, r, s, t; x3  r, x4  s and x5  t are free. 24. ⟨−5 − 6r, 2  3r, 4 − 2r,−1 − 8r, r; x5  r is free 25. ⟨5 − 3r, 6  2r, r,−4, 9; x3  r is

free 26. ⟨2 − 6r − 3s, r, 7  8s, s,−3; x2  r and x4  s are free 27. ⟨−2  5r − 4s, r, 9 − 7s, 6 − 3s, s; x2  r and x5  s are free 28. no solutions 29. ⟨r, 2  3s, s,−7, 4; x1  r and x3  s are free 30. ⟨4  5r − 3s, 5 − 3r,−2  2r − 4s, 3 − 7r  6s, r, s; x5  r and x6  s are free 31. ⟨7  9r − 4s,−3r  s, r,−1 − 6s, 2 − 5s, s; x3  r and x6  s are free 32. ⟨2 − 6r − 3s − 5t, r, 9  8s  2t, s, t,−1, x2  r, x4  s and x5  t are free 33. ⟨3 − 5r,−7  2r, r, 9, 4, x3  r is free 34. ⟨−2  4r − 7s, 5 − 6r  3s, r, 6 − 9s, s,

x3  r, x5  s are free 35. ⟨−2  8r  s, 6 − 5r − 7s, r, 3  4s, 8 − 9s, s, x3  r, x6  s are free 36. ⟨−5 − 6r, 2  7r, 3 − 4r, r,−8, 9, x4  r is free 37. Yes, b  3v1 − 5v2 (only solution) 38. b is not in SpanS. 39. Yes. b  3v1 − 2v2  v3 (only solution) 40. Yes. b  1

2 v1  32 v2 (there are infinitely many solutions) 41. b

 is not in SpanS.

Selected Answers to the Exercises 5

42. Yes. b  5v1 − 2v2  4v3 (only solution) 43. Yes. b  −17v1  13v2 (there are infinitely many solutions)

44. Yes. b  3v1 − 2v2  5v3 (there are infinitely many solutions) 45. Yes. b  −2v1  5v2 (there are infinitely many solutions) 46. Yes. b  2v1 − 7v2  3v4 (there are infinitely many solutions) 47. Yes.

b  v1 − v2  2v3 (only solution) 48. Yes. b  5v1 − 4v2 (there are infinitely many solutions) 49. 0, 27

,− 3 7

50. 43 11

,− 8 11

,− 8 11

, 2 11

51. − 7 5

,− 8 5

,− 8 5

,− 7 5

52. −2s, 6s − 47 3

, 8 3

, s , where

x4  s ∈ . 53. ⟨−7,−1,−26, 31, 2, 7 54. 8 − 6r − 17t

4 , r,−7,−2 − t

4 , t,−1 , where x5  t ∈ .

55. 8 − 9s,− 1 4  25

4 s, 5 − 5s

4 , 3  4s, 8 − 9s, s , where x6  s ∈ . 56. ⟨5,−3,−9 57.

⟨11,−3, 4 58. ⟨−14,−2, 3, 2 59. ⟨−3 − 3r  4s, r,−2 − 2s, s, 2, x2  r ∈ , x4  s ∈  are free. 60. ⟨3  5r, r,−2, 4, y  r ∈  is free. 61. ⟨3 − 5r,−7  2r, r, 4, z  r ∈  is free. 62. No solutions. 63. One possible answer: ⟨x, y, z  ⟨40, 22, 0  t⟨−43,−25, 2. 64. $1.50 per shirt, $5 per pair of slacks, and $7 per jacket. 65. 1 kilogram of Barley, 3 kilograms of Oats, and 2 kilogram of Soy.

66. The rref is 1 0 − 4

5 159 5

0 1 9 5

331 5

, so d  159  4p/5 and n  331 − 9p/5.

The solution with the smallest number of pennies has p  4, n  59, and d  35. (Note: since we want n ≥ 0, we need p ≤ 36) The solution with the largest number of pennies has p  34, n  5 and d  59.

1.5 Exercises

1. a. consistent, and b. square 2. a. consistent, and b. overdetermined 3. a. inconsistent, and b. overdetermined 4. a. consistent, and b. underdetermined 5. a. inconsistent, and b. underdetermined 6. a. consistent, and b. square 7. a. consistent, and b. square 8. a. consistent, and b. underdetermined. 9. a. consistent, and b. square. 10. a. inconsistent, and b. overdetermined. 11. independent 12. independent 13. dependent 14. dependent 15. dependent 16. independent 17. dependent 18. dependent: 2v1 − v2  v3  03.

6 Selected Answers to the Exercises

19. independent 20. independent 21. dependent: 2v1 − v2  5v3  04. 22. dependent: −4v1 − 7v2  v3  04. 23. dependent: −3v1 − v2  5v3  05. 24. dependent: −2v1 − 3v2  4v3  v4  05 25. a. − 2v1 − 3v2  v3  04 b. 5v1  7v2  v4  04 c. − v2  5v3  2v4  04 26. a. − 2v1  v2  v3  05 b. − 3v1 − 2v2  v4  05 c. − 7v2 − 3v3  2v4  05 27. a. − 3v1 − 5v2  6v3  v4  04 b. − 2v1 − 3v2  5v3  v5  04

c. − v1  7v3 − 3v4  5v5  04 28. a. − 4v1 − 5v2  v3  04 b. − 3v1 − 2v2  v4  2v5  04

c. 7v1  2v3 − 5v4 − 10v5  04 29. a. 5v1  2v2  05 b. 5v1 − 6v3  2v5  05 c. v3  v4  v5  05 30. dependent: 5 vectors in 4 must be dependent. 31. One possible dependence equation is: 32u  v − 14u  5v− 4w − 2u − v  2w  0 n. 32. The system will have no solution if r  −4 and s ≠ 7

2 . The system will have exactly one

solution if r ≠ −4 and s is any real number. The system will have an infinite number of solutions if r  −4 and s  7

2 .

33. In all cases, x is a leading variable. The system will have no solution if s  −8 and t ≠ 4. The system will have exactly one solution if s ≠ −8, t is any real number, and r ≠ −6. The system will have an infinite number of solutions involving exactly one free variable in two ways. First, if s  −8, t  4, and r ≠ −6, then y is a leading variable and z is a free variable. If r  −6, then z is automatically a leading variable because of the 2nd equation, and z  − 13

10 . This will satisfy the 3rd equation if and only if 8  s − 13

10  t − 4, so

10t  13s  −144. Thus, the second way is to have r  −6 and s and t any two real numbers satisfying 10t  13s  −144. In this case, y is a free variable. The system will never have an infinite number of solutions involving exactly two free variables.

34. c  22 46. a. False. b. False. c. True. d. False e. True. f. False. g. True. h. False. i. True. j.

False.

1.6 Exercises

1. The corresponding pairs of vectors are parallel to each other. 2. If we denote by S  v1, v2 and S/  w 1, w 2, w 3, then we will get:

v1  35 w 1  15

w 2, v2  15 w 1 − 35

w 2, w 1  32 v1  12

v2, w 2  12 v1 − 32

v2,

w 3  2v1 − v2. 3. We should apply the Equality of Spans Theorem; if S  v1, v2 and S/  w 1, w 2, then

we will get: v1  13

w 1  23 w 2, v2  53

w 1  163 w 2, w 1  8v1 − v2, w 2  − 52

v1  12 v2.

4. Although both Theorems are applicable, the first Theorem will certainly be easier to apply: corresponding pairs of vectors are parallel to each other.

5. a. S consists of 6 vectors from 3, so S is certainly dependent. b. v2 and v4 are parallel

Selected Answers to the Exercises 7

to v1. c. Eliminate v2 and v4, to get: S /  v1, v3, v5, v6 . You could also eliminate v1 and v2 and keep v4, or eliminate the v1 and v4 and keep v2. d. v5  53

v1  2v3. e.

Eliminate either v1 or v3 or v5 to get a set with 3 vectors left. One possible answer is S //  v1, v3, v6 . f. The rref of the 3  3 matrix you obtained should not have any free variables.

6. a. S consists of 5 vectors from 4, so S is certainly dependent. b. v4 is parallel to v2. c. Eliminate either v2 or v4, so one possible answer is: S /  v1, v2, v3, v5  d. v3  3v1 − 2v2 and v5  2v1  v2. e. two vectors are left; one possible answer is: S //  v1, v2 . f. the two vectors (no matter which you picked) are obviously not parallel.

7. a, b and d only. 8. a, d and e only. 9. a, b, c, d and f only. 10. S /  v1, v2, v3 ; v4  3v1  2v2 − 4v3. 11. S /  v1, v2 ; v3  3v1 − 2v2 ; v4  2v1  3v2. 12. S /  v1, v3 ; v2  −5v1; v4  3v1  5v3. 13. S /  v1, v2, v3 ; v4  3v1  4v2 − 2v3 ; v5  2v1  3v2 − v3 . 14. S /  v1, v2, v4 ; v3  4v1  7v2; v5  3v1  4v2 − 2v4 . 15. S /  v1, v3, v4 ; v2  −4v1; v5  12

v1 − 32 v3  12

v4 .

16. S /  v1, v3, v5 ; v2  3v1; v4  4v1  2v3. 17. S /  v1, v2 ; v3  4v1  3v2; v4  −v1  2v2; v5  −2v1 − v2. 18. S /  v1, v2 ; v3  2v1 − 3v2. 19. S /  v1, v2, v3 . 20. S /  v1, v2 ; v3  v1  2v2; v4  −6v1  5v2. 21. S /  v1, v2, v4 ; v3  5v1  7v2. 22. S /  v1, v3 ; v2  −3v1; v4  5v1  4v3. 23. S /  v1, v2, v4 ; v3  52

v1  92 v2; v5  v1  7v2  5v4 .

24. S /  v1, v2, v3, v5; v4  5v1  4v2 − 2v3. 25. S /  v1, v2, v3 ; v4  5v1  4v2 − 2v3; v5  7v1  5v2 − 4v3. 26. S /  v1, v2 ; v3  17

v1 − 57 v2.

27. S /  v1, v2, v3 . 28. S /  v1, v2 ; v3  47

v1  297 v2; v4  17

v1 − 57 v2.

29. S /  v1, v2, v4 ; v3  5v1  8v2. 30. S /  v1, v2, v3 ; v4  2v1 − 3v2 − 4v3. 31. S /  v1, v3, v5 ; v2  16

v1; v4  76 v1 − 9v3.

32. S /  v1, v2, v4 ; v3  −6v1  5v2; v5  5v1 − 3v2. 33. S /  v1, v2, v4, v5 ; v3  5v1  8v2. 34. S /  v1, v2, v4 ; v3  7v1 − 9v2 ; v5  2v1  v2  5v4; v6  4v1 − 6v2 − 3v4. 35. S /  v1, v3, v6 ; v2  −4v1; v4  5/3v1; v5  5/3v1  2v3. 36. S /  v1, v2; v3  3v1 − 2v2; v4  −5v2; v5  2v1  v2. 37. S /  v1, v2; v3  −2/3v1  7/3v2; v4  1/3v1  1/3v2;

v5  −1/3v1  2/3v2.

8 Selected Answers to the Exercises

38. S /  v1, v2, v4 ; v3  − 32 v2; v5  12

v2  v4.

39. S /  v1, v2, v4 ; v3  2v1 − 4v2; v5  2v1 − 3v2. 40. S /  v1, v2, v4, v5 ; v3  7v1 − 4v2; v6  6v1 − 7v2  3v4 − 5v5. 41. S /  v1, v2, v4 ; v3  5v1  8v2; v5  5v1  7v2  4v4; v6  4v1  3v2  2v4. 42. S /  v1, v2; v3  −2v1; v4  −v1  v2; v5  −2v1  5v2. 43. S /  v1, v2, v4 ; v3  4v1  3v2; v5  2v1  5v2  3v4 44. S /  v1, v2, v3, v5 ; v4  3v1  4v2 − 2v3; v6  4v1  2v2 − 3v3 − 5v5. 45. S /  v1, v2, v3, v5, v6 ; v4  5v1  3v2 − 2v3. 46. a. Two non-parallel vectors are independent. b. x  2z  0. c. only e2 is in SpanS

d. Yes, because e1 ∉ SpanS. d. No, because e2 ∈ SpanS. e. Yes, because e3 ∉ SpanS.

47. b. Yes. c. No. d. No. e. Yes. 48. b.

1 0 0 0 −2 0 0 1 −1

0 1 0 0 5 2

0 0 − 37 26

27 26

0 0 1 0 1 2

0 0 − 7 26

3 26

0 0 0 1 0 0 0 8 13

17 13

0 0 0 0 0 1 0 6 13

16 13

0 0 0 0 0 0 1 7 13

− 16 13

c. independent d. dependent e. independent f. independent g. independent 53. a. False. b. True. c. False. d. True. e. False. f. False. g. False. h. False. i. False.

1.7 Exercises

1. ⟨7, 5. 2. It doesn’t contain the origin. 3. ⟨7, 3, 0,⟨0, 4, 7 is one possibility (you can also use ⟨4, 0,−3 as a second vector. 4. ⟨5, 0, 2,⟨0, 1, 0 5. It doesn’t contain the origin. 6. v1, v2, v4 ; dimW  3 7. v1, v2, v3 ; dimW  3 8. v1, v3, v6 ; dimW  3 9. v1, v2, v4 ; dimW  3 10. v1, v2, v4, v5 ; dimW  4 11. v1, v2, v4 ; dimW  3 12. v1, v3, v6 ; dimW  3 13. v1, v2; dimW  2 14. ⟨5,−3, 6, 7, ⟨3,−1, 4, 5; dimW  2 15. ⟨5,−3, 6, 7, ⟨3,−1, 4, 5, ⟨5, 1, 8,−3; dimW  3 16. ⟨5,−3, 6, 7, ⟨3,−1, 4, 5, ⟨1, 3,−1, 1; dimW  3 17. ⟨7, 5,−4, 3, 9, ⟨4, 3,−2, 1, 5; dimW  2 18. ⟨7, 5,−4, 3, 9, ⟨4, 3,−2, 1, 5, ⟨4, 3,−5, 9, 5; dimW  3 19. ⟨7, 5,−4, 3, 9, ⟨4, 3,−2, 1, 5, ⟨4, 3,−5, 4, 5; dimW  3 20. ⟨5,−3, 7,−4, 6, 3, ⟨9,−7, 8,−9, 4, 7, ⟨4,−5,−3,−6,−7, 5; dimW  3 21. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨−4, 1,−3,−8, 5, 1; dimW  3

Selected Answers to the Exercises 9

22. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨6,−4, 3,−9,−2, 5, ⟨−4, 1,−3,−8, 5, 1; dimW  4

23. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨−4, 1,−3,−2, 4,−1; dimW  3 24. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨8,−4, 3,−9,−2, 5, ⟨−4, 1,−3,−2, 4,−1;

dimW  4 25. ⟨7,−3, 4, 2,−5, 2, ⟨5,−2, 3, 3,−4, 1, ⟨5,−3, 2,−8,−1, 4, ⟨8,−4, 3,−9,−2, 5, ⟨−4, 1,−3,−2, 4

dimW  5 26. the xz-plane. ⟨1, 0, 0, ⟨0, 0, 1; dimW  2 27. the x-axis. ⟨1, 0, 0; dimW  1 28. W is not a subspace. It is not closed under addition. 29. ⟨5, 0, 1, 0, ⟨0,−1, 0, 1; dimW  2 30. ⟨0, 5, 1, 0, 0, ⟨0, 6, 0, 1, 0, ⟨−7, 0, 0, 0, 1; dimW  3 31. It does not contain the origin. 32. W is not a subspace, because it is not closed under scalar multiplication.

1.8 Exercises

1. rowspaceA: ⟨1, 0, 0, 3,⟨0, 1, 0, 2,⟨0, 0, 1,−4; colspaceA: ⟨2,−3, 4,⟨−3, 0,−5,⟨3,−1,−2; nullspaceA: ⟨−3,−2, 4, 1; nullspaceA  03 ; rankA  3  rankA; nullityA  1; nullityA  1; 3  1  4 and 3  0  3; ⟨2,−3, 3,−12  2⟨1, 0, 0, 3 − 3⟨0, 1, 0, 2  3⟨0, 0, 1,−4 ⟨−3, 0,−1,−5  −3⟨1, 0, 0, 3 − ⟨0, 0, 1,−4; ⟨4,−5,−2, 10  4⟨1, 0, 0, 3 − 5⟨0, 1, 0, 2 − 2⟨0, 0, 1,−4

2. rowspaceA: ⟨1,−5, 0, 3,⟨0, 0, 1, 5; colspaceA: ⟨−2, 4,−3,⟨3,−2, 4; nullspaceA: ⟨5, 1, 0, 0,⟨−3, 0,−5, 1; nullspaceA: ⟨−10, 1, 8; rankA  2  rankA; nullityA  2; nullityA  1; 2  2  4 and 2  1  3; ⟨−2, 10, 3, 9  −2⟨1,−5, 0, 3  3⟨0, 0, 1, 5 ⟨4,−20,−2, 2  −4⟨1,−5, 0, 3 − 2⟨0, 0, 1, 5; ⟨−3, 15, 4, 11  −3⟨1,−5, 0, 3  4⟨0, 0, 1, 5

3. rowspaceA: ⟨1, 0, 4, 0, 3,⟨0, 1, 7, 0, 4,⟨0, 0, 0, 1,−2; colspaceA: ⟨5,−2, 3,⟨−2, 3,−4,⟨−1,−3, 2; nullspaceA: ⟨−4,−7, 1, 0, 0,⟨−3,−4, 0, 2, 1; nullspaceA  03 ; rankA  3  rankA; nullityA  2; nullityA  0; 3  2  5 and 3  0  3; ⟨5,−2, 6,−1, 9  5⟨1, 0, 4, 0, 3 − 2⟨0, 1, 7, 0, 4 − ⟨0, 0, 0, 1,−2 ⟨−2, 3, 13,−3, 12  −2⟨1, 0, 4, 0, 3  3⟨0, 1, 7, 0, 4 − 3⟨0, 0, 0, 1,−2 ⟨3,−4,−16, 2,−11  3⟨1, 0, 4, 0, 3 − 4⟨0, 1, 7, 0, 4  2⟨0, 0, 0, 1,−2

4. rowspaceA: ⟨1, 3, 0, 4, 0,⟨0, 0, 1, 2, 0,⟨0, 0, 0, 0, 1; colspaceA: ⟨−1,−3, 2,⟨−2, 3,−4,⟨5,−2, 3; nullspaceA: ⟨−3, 1, 0, 0, 0,⟨−4, 0,−2, 1, 0; nullspaceA  03 ; rankA  3  rankA; nullityA  2; nullityA  0; 3  2  5 and 3  0  3; ⟨−1,−3,−2,−8, 5  −⟨1, 3, 0, 4, 0 − 2⟨0, 0, 1, 2, 0  5⟨0, 0, 0, 0, 1 ⟨−3,−9, 3,−6,−2  −3⟨1, 3, 0, 4, 0  3⟨0, 0, 1, 2, 0 − 2⟨0, 0, 0, 0, 1

10 Selected Answers to the Exercises

⟨2, 6,−4, 0, 3  2⟨1, 3, 0, 4, 0 − 4⟨0, 0, 1, 2, 0  3⟨0, 0, 0, 0, 1 5. rowspaceA: ⟨1, 0, 4,−1,−2,⟨0, 1, 3, 2,−1; colspaceA: ⟨−2, 3,−5,⟨5,−2, 3;

nullspaceA: ⟨−4,−3, 1, 0, 0,⟨1,−2, 0, 1, 0,⟨2, 1, 0, 0, 1; nullspaceA: ⟨1, 19, 11; rankA  2  rankA; nullityA  3; nullityA  1; 2  3  5 and 2  1  3; ⟨−2, 5, 7, 12,−1  −2⟨1, 0, 4,−1,−2  5⟨0, 1, 3, 2,−1; ⟨3,−2, 6,−7,−4  3⟨1, 0, 4,−1,−2 − 2⟨0, 1, 3, 2,−1 ⟨−5, 3,−11, 11, 7  −5⟨1, 0, 4,−1,−2  3⟨0, 1, 3, 2,−1

6. rowspaceA: ⟨1, 0, 0,⟨0, 1, 0,⟨0, 0, 1; colspaceA: ⟨3, 7, 1,−9,⟨−2,−4, 0,−5,⟨5,−6, 8, 2; nullspaceA  03 ; nullspaceA: ⟨−14, 243, 141, 200; rankA  3  rankA; nullityA  0; nullityA  1; 2  2  4 and 2  2  4; ⟨3,−2, 5  3⟨1, 0, 0 − 2⟨0, 1, 0  5⟨0, 0, 1; ⟨7, 4,−6  7⟨1, 0, 0  4⟨0, 1, 0 − 6⟨0, 0, 1 ⟨1, 0, 8  1⟨1, 0, 0  8⟨0, 0, 1; ⟨−9,−5, 2  −9⟨1, 0, 0 − 5⟨0, 1, 0  2⟨0, 0, 1

7. rowspaceA: ⟨1, 0, 1,−6,⟨0, 1, 2, 5; colspaceA: ⟨2, 1,−2,−2,⟨3,−2, 1,−4; nullspaceA: ⟨−1,−2, 1, 0,⟨6,−5, 0, 1; nullspaceA: ⟨3, 8, 7, 0,⟨8,−2, 0, 7; rankA  2  rankA; nullityA  2; nullityA  2; 2  2  4 and 2  2  4; ⟨2, 3, 8, 3  2⟨1, 0, 1,−6  3⟨0, 1, 2, 5; ⟨1,−2,−3,−16  ⟨1, 0, 1,−6 − 2⟨0, 1, 2, 5 ⟨−2, 1, 0, 17  −2⟨1, 0, 1,−6  ⟨0, 1, 2, 5; ⟨−2,−4,−10,−8  −2⟨1, 0, 1,−6 − 4⟨0, 1, 2, 5

8. rowspaceA: ⟨1,−3, 0, 5,⟨0, 0, 1, 4; colspaceA: ⟨−3, 7, 5, 4,⟨1,−4, 2,−3; nullspaceA: ⟨3, 1, 0, 0,⟨−5, 0,−4, 1; nullspaceA: ⟨34, 11, 5, 0,⟨−1,−1, 0, 1; rankA  2  rankA; nullityA  2; nullityA  2; 2  2  4 and 2  2  4; ⟨−3, 9, 1,−11  −3⟨1,−3, 0, 5  ⟨0, 0, 1, 4; ⟨7,−21,−4, 19  7⟨1,−3, 0, 5 − 4⟨0, 0, 1, 4 ⟨5,−15, 2, 33  5⟨1,−3, 0, 5  2⟨0, 0, 1, 4; ⟨4,−12,−3, 8  4⟨1,−3, 0, 5 − 3⟨0, 0, 1, 4

9. rowspaceA: ⟨2, 0, 5, 0, 2,⟨0, 2, 9, 0, 14,⟨0, 0, 0, 1, 5; colspaceA: ⟨0,−7, 8,−2,⟨2, 1,−2,−2,⟨−4, 3,−1, 6; nullspaceA: ⟨−5,−9, 2, 0, 0,⟨−1,−7, 0,−5, 1; nullspaceA: ⟨4,−6,−4, 5; rankA  3  rankA; nullityA  2; nullityA  1; 3  2  5 and 3  1  4; ⟨0, 2, 9,−4,−6  ⟨0, 2, 9, 0, 14 − 4⟨0, 0, 0, 1, 5; ⟨−7, 1,−13, 3, 15  − 7

2 ⟨2, 0, 5, 0, 2  1

2 ⟨0, 2, 9, 0, 14  3⟨0, 0, 0, 1, 5

⟨8,−2, 11,−1,−11  4⟨2, 0, 5, 0, 2 − ⟨0, 2, 9, 0, 14 − ⟨0, 0, 0, 1, 5 ⟨−2,−2,−14, 6, 14  −⟨2, 0, 5, 0, 2 − ⟨0, 2, 9, 0, 14  6⟨0, 0, 0, 1, 5

10. rowspaceA: ⟨1, 0, 0, 5, 7,⟨0, 1, 0, 4, 5,⟨0, 0, 1,−2,−4; colspaceA: ⟨3, 7, 1,−9,⟨−2,−4, 0, 6,⟨5, 6, 3,−9; nullspaceA: ⟨−5,−4, 2, 1, 0,⟨−7,−5, 4, 0, 1; nullspaceA: ⟨9, 6,−6, 7; rankA  3  rankA; nullityA  2; nullityA  1; 3  2  5 and 3  1  4; ⟨3,−2, 5,−3,−9  3⟨1, 0, 0, 5, 7 − 2⟨0, 1, 0, 4, 5  5⟨0, 0, 1,−2,−4 ⟨7,−4, 6, 7, 5  7⟨1, 0, 0, 5, 7 − 4⟨0, 1, 0, 4, 5  6⟨0, 0, 1,−2,−4 ⟨1, 0, 3,−1,−5  ⟨1, 0, 0, 5, 7  3⟨0, 0, 1,−2,−4; ⟨−9, 6,−9,−3, 3  −9⟨1, 0, 0, 5, 7  6⟨0, 1, 0, 4, 5 − 9⟨0, 0, 1,−2,−4

11. rowspaceA: ⟨7, 0, 4, 1,⟨0, 7, 29,−5; colspaceA: ⟨15,−3, 13,−9,−11,⟨3,−2, 4, 1, 2; nullspaceA: ⟨−4,−29, 7, 0,⟨−1, 5, 0, 7; nullspaceA: ⟨−2, 3, 3, 0, 0,⟨1, 2, 0, 1, 0,⟨4, 9, 0, 0, 3; rankA  2  rankA; nullityA  2; nullityA  3; 2  2  4 and 2  3  5;

Selected Answers to the Exercises 11

⟨15, 3, 21, 0  15 7 ⟨7, 0, 4, 1  3

7 ⟨0, 7, 29,−5;

⟨−3,−2,−10, 1  −3 7 ⟨7, 0, 4, 1 − 2

7 ⟨0, 7, 29,−5

⟨13, 4, 24,−1  13 7 ⟨7, 0, 4, 1  4

7 ⟨0, 7, 29,−5;

⟨−9, 1,−1,−2  −9 7 ⟨7, 0, 4, 1  1

7 ⟨0, 7, 29,−5

⟨−11, 2, 2,−3  −11 7

⟨7, 0, 4, 1  2 7 ⟨0, 7, 29,−5

12. rowspaceA: ⟨1, 0, 5, 0,⟨0, 1, 8, 0,⟨0, 0, 0, 1; colspaceA: ⟨3,−2,−1, 2,⟨7,−4, 3, 6,⟨1, 0, 5, 1; nullspaceA: ⟨−5,−8, 1, 0; nullspaceA: ⟨−1, 2,−2, 1, 0,⟨23,−13, 14, 0, 2; rankA  3  rankA; nullityA  1; nullityA  2; 3  1  4 and 3  2  5; ⟨3,−2,−1, 2  3⟨1, 0, 5, 0 − 2⟨0, 1, 8, 0  2⟨0, 0, 0, 1; ⟨7,−4, 3, 6  7⟨1, 0, 5, 0 − 4⟨0, 1, 8, 0  6⟨0, 0, 0, 1 ⟨1, 0, 5, 1  ⟨1, 0, 5, 0  ⟨0, 0, 0, 1; ⟨−9, 6, 3,−8  −9⟨1, 0, 5, 0  6⟨0, 1, 8, 0 − 8⟨0, 0, 0, 1 ⟨4,−3,−4, 9  4⟨1, 0, 5, 0 − 3⟨0, 1, 8, 0  9⟨0, 0, 0, 1

13. rowspaceA: ⟨1, 0, 0, 2,⟨0, 1, 0,−3,⟨0, 0, 1,−4; colspaceA: ⟨5,−3, 3,−9,−1,⟨3,−2, 4, 1, 2,⟨2,−1, 3,−1, 2; nullspaceA: ⟨−2, 3, 4, 1; nullspaceA: ⟨30, 29,−9, 4,⟨2,−3,−5, 0, 4; rankA  3  rankA; nullityA  1; nullityA  2; 3  1  4 and 3  2  5; ⟨5, 3, 2,−7  5⟨1, 0, 0, 2  3⟨0, 1, 0,−3  2⟨0, 0, 1,−4; ⟨−3,−2,−1, 4  −3⟨1, 0, 0, 2 − 2⟨0, 1, 0,−3 − ⟨0, 0, 1,−4 ⟨3, 4, 3,−18  3⟨1, 0, 0, 2  4⟨0, 1, 0,−3  3⟨0, 0, 1,−4; ⟨−9, 1,−1,−17  −9⟨1, 0, 0, 2  ⟨0, 1, 0,−3 − ⟨0, 0, 1,−4 ⟨−1, 2, 2,−16  −1⟨1, 0, 0, 2  2⟨0, 1, 0,−3  2⟨0, 0, 1,−4

14. rowspaceA: ⟨6, 1, 0, 7, 0,⟨0, 0, 1,−9, 0,⟨0, 0, 0, 0, 1; colspaceA: ⟨12,−6, 18,−6, 12,⟨3,−2, 4, 1, 2,⟨5,−3, 0, 7,−1; nullspaceA: ⟨−1, 6, 0, 0, 0,⟨−7, 0, 54, 6, 0; nullspaceA  Span⟨1, 4, 1, 1, 0,⟨−4,−9,−5, 0, 7; rankA  3  rankA; nullityA  2; nullityA  2; 3  2  5 and 3  2  5; ⟨12, 2, 3,−13, 5  2⟨6, 1, 0, 7, 0  3⟨0, 0, 1,−9, 0  5⟨0, 0, 0, 0, 1 ⟨−6,−1,−2, 11,−3  −⟨6, 1, 0, 7, 0 − 2⟨0, 0, 1,−9, 0 − 3⟨0, 0, 0, 0, 1 ⟨18, 3, 4,−15, 0  3⟨6, 1, 0, 7, 0  4⟨0, 0, 1,−9, 0; ⟨−6,−1, 1,−16, 7  −6⟨6, 1, 0, 7, 0  ⟨0, 0, 1,−9, 0  7⟨0, 0, 0, 0, 1 ⟨12, 2, 2,−4,−1  2 1, 1

6 , 0, 7

6 , 0  2⟨0, 0, 1,−9, 0 − ⟨0, 0, 0, 0, 1

15. rowspaceA: ⟨1, 0, 5, 0, 0,⟨0, 1, 8, 0, 0,⟨0, 0, 0, 1, 0,⟨0, 0, 0, 0, 1; colspaceA: ⟨3, 7, 1,−9, 4,⟨−2,−4, 0, 6,−3,⟨2, 6, 1,−8, 9,⟨5, 6, 3,−9, 7; nullspaceA: ⟨−5,−8, 1, 0, 0; nullspaceA: ⟨91, 82,−74, 93, 16; rankA  4  rankA; nullityA  1  nullityA; 4  1  5 for both matrices; ⟨3,−2,−1, 2, 5  3⟨1, 0, 5, 0, 0 − 2⟨0, 1, 8, 0, 0  2⟨0, 0, 0, 1, 0  5⟨0, 0, 0, 0, 1 ⟨7,−4, 3, 6, 6  7⟨1, 0, 5, 0, 0 − 4⟨0, 1, 8, 0, 0  6⟨0, 0, 0, 1, 0  6⟨0, 0, 0, 0, 1 ⟨1, 0, 5, 1, 3  ⟨1, 0, 5, 0, 0  5⟨0, 0, 0, 1, 0  3⟨0, 0, 0, 0, 1 ⟨−9, 6, 3,−8,−9  9⟨1, 0, 5, 0, 0 − 6⟨0, 1, 8, 0, 0 − 8⟨0, 0, 0, 1, 0 − 9⟨0, 0, 0, 0, 1 ⟨4,−3,−4, 9, 7  4⟨1, 0, 5, 0, 0 − 3⟨0, 1, 8, 0, 0  9⟨0, 0, 0, 1, 0  7⟨0, 0, 0, 0, 1

16. rowspaceA: ⟨1, 0, 7, 0, 2, 4,⟨0, 1,−9, 0, 1,−6,⟨0, 0, 0, 1, 5,−3; colspaceA: ⟨2,−1, 3,−1, 2,⟨3,−2, 4, 1, 2,⟨1,−3, 2,−2,−1;

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Homework Tutor
Homework Master
Top Class Results
Coursework Help Online
High Quality Assignments
Professor Smith
Writer Writer Name Offer Chat
Homework Tutor

ONLINE

Homework Tutor

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$35 Chat With Writer
Homework Master

ONLINE

Homework Master

I will be delighted to work on your project. As an experienced writer, I can provide you top quality, well researched, concise and error-free work within your provided deadline at very reasonable prices.

$43 Chat With Writer
Top Class Results

ONLINE

Top Class Results

I have read your project description carefully and you will get plagiarism free writing according to your requirements. Thank You

$25 Chat With Writer
Coursework Help Online

ONLINE

Coursework Help Online

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$35 Chat With Writer
High Quality Assignments

ONLINE

High Quality Assignments

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$38 Chat With Writer
Professor Smith

ONLINE

Professor Smith

I am a professional and experienced writer and I have written research reports, proposals, essays, thesis and dissertations on a variety of topics.

$36 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

For all quoted material the citation must include - Las ruinas de machu picchu están al lado del mar. cierto falso - I need 2 discussion questions answers 200 word min with references. - 2v0 602 vsphere 6.5 foundations exam dumps - Global marketing pearson 9th edition pdf - Growing up asian in australia teaching resources - Iasb conceptual framework 2018 pdf - Pbs frontline walmart - Ray tracing vs rasterization - Lapidary equipment for beginners - Hunter united mobile banking - Number of neutrons in phosphorus - Time 100 full list - All spells used in harry potter - The thesis statement should be a declarative statement - Butler service training manual - 13.1 tangent ratio answer key - It 210 milestone two technology solutions and recommendations - Intercultural communication occurs when - Assignment - Shell canada fuels productivity with erp - Discussion week1 - St james episcopal church warrenton va - 21st Century - Index of refraction sodium chloride - Breezair evaporative cooler fault codes - Curtin plagiarism checklist - IT 345 Assignment 1 - Organizational behavior in the workplace worksheet - Scope of Practice and Patient’s Healthcare Accessibility - Consider laminar flow of a newtonian fluid of viscosity - Two storey detached house - Density formula for bcc - 5 7 driving data answers - Leccion 4 panorama activities answers - Somatic symptom disorder with predominant pain icd 10 - Edexcel history past papers - Nmc reflective discussion form - I just wanna be average quotes - Paulton junior school website - 22.1 data gathering techniques homework answers - Case Study, Journal Article and Discussion (APA Format) - Applied statistics health science evidence based practice in nursing - Powerpoint presentation - A consensus of procedures in the career counseling models - 4000 essential english words 5 answer key - Article summarizing - Youth allowance not living at home - Foundations of business william pride pdf - Themes in billy elliot - Between the lines answers - Which of the following is not true regarding depreciation - Qianlong on chinese trade with england - Expatriate programs coca cola - Th to f phonological process - Personal leadership statement paper - Ethical Decision-Making Model - Torre de manila demolition - Sample method statement for electrical works - As 1851-2012 pdf free download - Sequence alignment/map optional fields specification - Bedford st martin's exercise central - Omnibus leadership model - Week 2 Discussion - Corporate strategy of infosys - A raisin in the sun act 2 scene 2 script - How to draw a resistor - Union catholic regional high school - 12 month referral order - Nursing G P (Due 24 hours) - Starbucks strategic management process model - Reaction of sodium thiosulfate and hydrochloric acid - Lumière supporting a virtual workspace on the cloud - Koch and co coupon - 1984 chapters 5 8 - Community Advocacy - Krispy kreme weaknesses - Dragon age inquisition save val colline - Plumpton college veterinary nursing - IOM Future of Nursing Report and Nursing - The three principles of economics include optimization, equilibrium, and empiricism. - Melanin and pineal gland - Insurance institute of south africa courses - Week 3 for Ben - Information about companies that have been harmed or bankrupted by a disaster. - Curtin university free bus - Marrybrown menu price malaysia - The trouble with the term art summary - Runway edge lights color - Hima aus education consultancy pokhara - Bankwest children's savings account - All about me flag - Which are appropriate editors for writing shell scripts - DISCUSSION - Halifax quality of life - Samoan quotes about life - An activity that has more than one dependency arrow flowing into it is termed a(n) - Jesus is alive lyrics fellowship creative - Bs 3505 class e - Business Intelligence