Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Antacid experiment results

17/03/2021 Client: saad24vbs Deadline: 2 Day

Antacid Analysis and Titration Hands-On Labs, Inc. 42-0139-00-02

Review the safety materials and wear goggles when working with chemicals. Read the entire exercise before you begin. Take time to organize the materials you will need and set aside a safe work space in which to complete the exercise.

Experiment Summary:

You will use a back-titration technique to determine the amount of acid that a commercial antacid is capable of neutralizing. You will be introduced to experimental controls, and use a control to validate the antacid neutralization analysis.

EXPERIMENT

© Hands-On Labs, Inc. www.HOLscience.com 1

Learning Objectives Upon completion of this laboratory, you will be able to:

● Identify and explore the causes of acid reflux disease.

● Investigate the relationship between antacid and gastric acid and define how antacids neutralize gastric acid.

● Define titration, equivalence point, and pH indicator.

● Compare and contrast titrations and back titrations.

● Review back titration calculations and explain how control experiments are used to support experimental results.

● Perform a titration, back titration, and control experiment.

● Determine how much acid an antacid is able to neutralize.

Time Allocation: 2.5 hours

www.HOLscience.com 2 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

Materials Student Supplied Materials

Quantity Item Description 1 Bottle of distilled water 1 Dish soap 1 Metal spoon 1 Pair of scissors 1 Roll of paper towels 2 Sheets of white paper 1 Source of tap water

2-6 Thick textbooks

HOL Supplied Materials

Quantity Item Description 1 Digital scale 1 Glass Beaker, 100 mL 1 Graduated cylinder, 10 mL 1 Pair of gloves 1 Pair of safety goggles 1 Short stem pipet 1 Syringe, 10 mL 1 Stopcock 1 Test tube cleaning brush 1 Test tube clamp 1 Experiment Bag: Antacid Analysis and Titration

2- HCl, 1 M, 30 mL in dropper bottle 1- Phenolphthalein solution, 1% - 0.5 mL in pipet 2- Sodium hydroxide, 1 M - 30 mL in dropper bottle 2- Antacid tablets

Note: To fully and accurately complete all lab exercises, you will need access to:

1. A computer to upload digital camera images.

2. Basic photo editing software, such as Microsoft Word® or PowerPoint®, to add labels, leader lines, or text to digital photos.

3. Subject-specific textbook or appropriate reference resources from lecture content or other suggested resources.

Note: The packaging and/or materials in this LabPaq kit may differ slightly from that which is listed above. For an exact listing of materials, refer to the Contents List included in your LabPaq kit.

www.HOLscience.com 3 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

Background Acid Reflux Disease

If you have ever wondered what antacids are, or more specifically the chemistry behind how an antacid works, you are not alone. Antacids are used to neutralize gastric acid, a substance secreted in the stomach to promote the digestion of food. Gastric acid is produced and secreted by specialized glands in the stomach, where it functions to break down the food we consume into smaller nutrient particles so they can be absorbed by the small intestine. Gastric acid is composed primarily of hydrochloric acid (HCl), glycoproteins, and enzymes, and has a pH close to 2.0. The stomach is lined with mucus, a natural secretion that withstands and protects the stomach from direct contact with the otherwise corrosive HCl. In a healthy digestive system, the gastric acid remains in the stomach. See Figure 1.

Figure 1. Digestive System. © Leonello Calvetti

The lower end of the esophagus, the muscular tube that transports food from the mouth to the stomach, is surrounded by a ring of muscles known as the lower esophageal sphincter. The lower esophageal sphincter acts to prevent the stomach contents from moving upward into the esophagus. When this sphincter malfunctions or is otherwise compromised, gastric acid refluxes (moves back) into the esophagus resulting in acid reflux disease. Acid reflux disease causes inflammation and irritation of the esophageal lining. See Figure 2.

www.HOLscience.com 4 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

Figure 2. Gastric acid refluxes past the lower esophageal sphincter (as noted by the two arrows in the top image) and enters the esophagus, causing what is commonly known as acid reflux

disease. © Alila Sao Mai

Antacid Neutralization and Titration

While there are many ways to treat acid reflux disease, including prescription drugs, surgery, and diet modifications, the initial treatment for controlling the symptoms of acid reflux disease is through the use of over-the-counter medications, including antacids. Antacids are basic substances that neutralize, or raise the pH, of gastric acid (primarily HCl). In a neutralization reaction, the acid and the base first dissociate in solution, producing hydrogen (H+) and hydroxide (OH-) ions respectively, which then react to produce a salt and water. Commercial antacids contain a wide variety of basic substances as their active ingredient, including aluminum hydroxide (Al(OH)3), magnesium hydroxide (Mg(OH)2), sodium bicarbonate (NaHCO3), and calcium carbonate (CaCO3). See Figure 3.

Figure 3. Antacid neutralization reactions. (Top Reaction) Antacid neutralization reaction with aluminum hydroxide (Al(OH)3) as the active ingredient. (Bottom Reaction) Antacid neutralization reaction with calcium carbonate (CaCO3) as the active ingredient. Note that both reactions react

with the HCl to form a salt and water, and in the case of calcium carbonate, a gas (CO2).

www.HOLscience.com 5 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

An antacid’s effectiveness is based both qualitatively, by the physical relief it provides, and quantitatively, by calculating the amount gastric acid neutralized by the antacid. The technique used to calculate the amount of gastric acid neutralized by an antacid is titration, or more specifically, back titration. Titration is a direct, quantitative, volumetric technique, where a solution of a known concentration (titrant) is added to a solution of an unknown concentration (analyte) until the equivalence point is reached. The equivalence point of a titration, also known as a stoichiometric point, is the moment in a titration where exactly enough titrant has been added to completely react with the analyte.

A back titration is an indirect, quantitative volumetric technique where a known quantity of reagent is added to a known volume and concentration of analyte, and allowed to react. It is expected that the reaction is not complete and some analyte remains in the solution. The amount of analyte remaining is determined in a second step, by a titration reaction. A solution of known concentration (titrant) is added to the solution until the equivalence point is reached, which is indicated by a change in color. Consider, for example, a back titration to determine the amount of gastric acid neutralized by an antacid with the active ingredient aluminum hydroxide (Al(OH)3). A known mass of the Al(OH)3 containing antacid is mixed with an excess known volume and concentration of HCl and allowed to react. The remaining HCl, which was not neutralized by the antacid, is then titrated with a known concentration of NaOH until the equivalence point is reached. In this example, the antacid is the substance, the HCl is the analyte, and the NaOH is the titrant. The most effective antacid will leave the fewest HCl molecules after the reaction, and require less of the NaOH in the back titration. This back titration method can easily be used to compare the effectiveness of different antacids. The most effective antacid will leave the fewest HCl molecules after the reaction and require less of the NaOH solution in the back titration step.

In either a direct titration or indirect titration, the equivalence point can be identified through use of a pH indicator. A pH indicator is a substance that changes color when the pH of a solution changes, allowing scientists to qualitatively measure the moment when the analyte has completely reacted with the titrant. A common indicator for a titration between a weak acid and a strong base is phenolphthalein. Phenolphthalein is a pH indicator, which turns bright-pink in solutions with a pH of 8.2 or higher. Thus, equivalence points in titrations are marked by the analyte changing color from colorless to bright pink. See Figure 4 for a schematic representation of the back titration process.

There are many commercial advertisements for both

prescription and over-the-counter drugs to help with symptoms of

gastroesophageal reflux disease (GERD). GERD is simply acid reflux disease that occurs chronically, resulting in similar

symptoms and treatment as acid reflux disease.

www.HOLscience.com 6 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

Figure 4. Schematic representation of the back titration process.

Calculating Results

The quantity of HCl neutralized by the antacid is calculated indirectly by 1) calculating the amount of HCl present in the initial sample and 2) calculating the amount of HCl neutralized by the NaOH in the back-titration step. The difference between these two is the amount of HCl neutralized by the antacid.

For example, calculate a back titration with 0.5 g of antacid (Al(OH)3), 20 mL of 1.5M HCl as the analyte, and NaOH with a concentration of 1.0M as the titrant. To reach the equivalence point, 27 mL of NaOH was required.

Step 1) Calculate the initial amount of HCl available for neutralization by the antacid.

Note: The molecular weight of HCl is calculated by adding the molecular weights of the two elements in the compound: H + Cl (1.008g + 35.45g), thus 1 mole of HCl is equal to 36.46g.

www.HOLscience.com 7 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

When an HCl solution is neutralized to the stoichiometric point with NaOH, the number of moles of NaOH required to reach the stoichiometric point is equal to the amount of moles of HCl present.

Step 2) Calculate the number of moles of NaOH required to reach the stoichiometric point (neutralize the excess HCl) after initial neutralization with the 0.5 g of Al(OH)3.

Step 3) Calculate the amount of HCl neutralized by the 0.027 moles of NaOH.

Step 4) Calculate the amount of HCl neutralized by the antacid.

Step 5) Calculate the gram per gram neutralization of HCl by the antacid.

3 3

0.11g HCl = 0.22 g HCl neutralized / 1g Al(OH) 0.5g Al(OH)

To double check the results of the calculations and to confirm the results of the back titration, a control experiment may be run. In a control experiment the variable tested (the antacid) is removed from the experiment as a tool to quantitatively confirm that results of the experimental design were set up to evaluate a single variable. A control experiment for the back titration of an antacid is to perform a titration between 20 mL of 1.5M HCl and 1.0 M NaOH, removing the antacid from the experiment. A positive confirmation in the control experiment would be for the moles of NaOH required to reach stoichiometric quantities to be equal to the initial number of moles of HCl present in the experiment. This result in the control titration would confirm that the antacid was indeed neutralizing some of the HCl in the test, since without the antacid, more NaOH is needed for the neutralization.

For example, assume that in a control experiment, 30 mL of 1.0M NaOH was required to reach stoichiometric quantities when titrated into 20 mL of 1.5M HCl.

www.HOLscience.com 8 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

As shown in the above equations, in this example control experiment, the moles of NaOH required to reach stoichiometric quantities and neutralize the HCl is equal to the number of moles of HCl present in 20 mL of 1.5M HCl. Additionally, the number of grams of HCl neutralized by 30 mL of 1.0M NaOH is equal to the total number of grams of HCl initially present in the back titration experiment. Furthermore, as the back titration required 27 mL of 1.0M NaOH to neutralize the excess HCl, following the initial neutralization with the antacid, the difference in NaOH volume (30 mL – 27 mL) between the back titration and control experiment should equal a neutralization of 0.11 g HCl.

As the calculations show, the control experiment verifies that the back titration was successful in quantitatively determining the amount of HCl neutralized by 0.5 g of antacid (Al(OH)3).

www.HOLscience.com 9 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

Exercise 1: Back Titration of Antacid Neutralization In this exercise, you will perform a back titration to determine the amount of acid that a commercial antacid is able to neutralize.

Procedure

Note: Please read all steps and safety information before starting the procedure.

1. Gather the test tube holder, small stopcock, 10-mL syringe (titrator), and either 2 thick textbooks and the lab kit box or 5-6 thick textbooks. See Figure 5.

Figure 5. Titrator and small stopcock.

2. Remove the plunger from the titrator and place it back in your kit.

3. Attach the stopcock to the tip of the titrator by placing the larger, clear, plastic end of the stopcock into the tip of the titrator and then twist the stopcock into place. The stopcock should fit tightly into the titrator so that the liquid will not leak. See Figure 6.

www.HOLscience.com 10 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

Figure 6. Fitting the stopcock into the titrator.

4. Stack the 5 textbooks or stack 2 textbooks on top of the lab kit box.

5. Clamp the test tube holder around the middle of the titrator and slide the long end under the top 2 books in the stack. Place a sheet of white paper next to the bottom of the stack and set the 100-mL beaker on the sheet of white paper. The end of the stopcock should be located near the top of the beaker, approximately 1 cm above to 1 cm below the top of the beaker. See Figure 7.

Figure 7. Titration setup. Note the location of the end of the stopcock. It is important that the placement of the titrator allows for the white knob to be easily adjusted. If this is not the case, then either adjust the location of the books in the stack or slightly adjust where in the test tube

clamp the titrator is located.

www.HOLscience.com 11 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

6. Use the pipet to fill the titrator with 7 - 9 mL of distilled water.

Note: You must use distilled water for this step and not tap water.

7. Using both hands, one on the titrator and one on the stopcock, practice releasing water from the titrator into the beaker. The goal is to be comfortable releasing only one drop at a time from the titrator. See Figure 8.

Figure 8. Proper hand positioning for titration. When the open circle is facing you, the titrator is closed, when the open circle is directly under the titrator spout, the titrator is open and liquid

will flow.

8. When you are comfortable using the titrator, pour the water in the beaker down the drain, remove the titrator from the test tube clamp, and remove the stopcock from the titrator. Thoroughly dry each of these 3 items with paper towels.

9. When all items are completely dry, reassemble the titration setup, as shown in Figure 7.

10. Put on your safety gloves and goggles.

11. With the stopcock in the closed position, fill the titrator with 9 - 10 mL of the 1.0M NaOH.

12. Move the beaker away from the titrator and place a crumpled paper towel directly below the titrator.

www.HOLscience.com 12 ©Hands-On Labs, Inc.

Experiment Antacid Analysis and Titration

13. Using the stopcock, allow a few drops of the NaOH to flow through the titrator into the paper towel. This will fill the tip of the titrator with NaOH solution and remove any air bubbles from the titrator.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Top Grade Tutor
Write My Coursework
Engineering Help
Math Specialist
University Coursework Help
Calculation Master
Writer Writer Name Offer Chat
Top Grade Tutor

ONLINE

Top Grade Tutor

Give me a chance, i will do this with my best efforts

$90 Chat With Writer
Write My Coursework

ONLINE

Write My Coursework

I am known as Unrivaled Quality, Written to Standard, providing Plagiarism-free woork, and Always on Time

$100 Chat With Writer
Engineering Help

ONLINE

Engineering Help

I am known as Unrivaled Quality, Written to Standard, providing Plagiarism-free woork, and Always on Time

$99 Chat With Writer
Math Specialist

ONLINE

Math Specialist

I am known as Unrivaled Quality, Written to Standard, providing Plagiarism-free woork, and Always on Time

$42 Chat With Writer
University Coursework Help

ONLINE

University Coursework Help

You can award me any time as I am ready to start your project curiously. Waiting for your positive response. Thank you!

$21 Chat With Writer
Calculation Master

ONLINE

Calculation Master

I am known as Unrivaled Quality, Written to Standard, providing Plagiarism-free woork, and Always on Time

$59 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Bristol controlwave micro flow computer - DISCUSSION WEEK ,Qualitative Research Design - A glassy fine grained extrusive rock - Hooke's law experiment graph - The future of health care delivery - Acts of the apostles 2 1 13 - Discussion Board (respond to student post below) - Essay/Research - Jib approved electrician rate - Yarn measure equivalent to 18 hanks - Flipkart supply chain case study - Cloud Computing - Another eden murmur script - Short answer response examples hsc - Discussion responses - Starbucks job analysis - Emerging contemporary readings for writers - Physical lab - Composition of target market for lemonade - Tricia hussung - Redox titration calculations questions - Debriefing/ replies - Stevens college simnet online - Hawkesbury river county council - Monty python three headed knight - Mini project: meaningful place - 2/7 esplanade somerton park - Russell simmons helped hip hop artists invent - Distinguish between the two types of cost accounting systems - Cloud Computing and Digital Forensics - Are surds irrational numbers - Buchan caves swimming pool - Cell structure and function question answers - A short story with phrasal verbs - Edu 540 lesson plan - Army standards of dress - You better watch out you better not cry christmas song - Laboratory exercise 14 skull answers - Cheerleader tryout at coach's house - Article - Litter robot yellow light flashing rapidly - 162 in roman numerals - Blades inc case - Health services Finance - Parachute shapes and types - What is nutshell in computer - Delta galil investor relations - A box of bananas weighing 40.0 n rests - Kfc in china case study solution - Bis 155 week 8 final exam - The jessica banks case - Glo bus 3 year strategic plan sample - 887 - Clinical interviewing sommers flanagan pdf - Analytical balance calibration sop - Leeds clearing house clinical psychology - Does yossarian die in catch 22 - Bad reviews is the opportunity - Fundamental methods of mathematical economics - Asc 605 45 revenue recognition principal agent considerations - How to make a mummy national geographic - Experiment 1 heart valves and pumps - The sum of ten and the quotient of a number xxx and 666. - N 1901, which company famously became the world's first billion-dollar corporation? - Module 12 Discussion CL - Earth shaking event crossword - Dog star training witham - 6-8 pages paper - CASE STUDY (MANAGEMENT) - Cp huntington train for sale - Minimum school attendance nsw - Export business plan research paper - What does two overlapping arrows mean on snapchat - Receptor Activity and Receptor Superfamilies - Baxley brothers has a dso of 23 days - Merrill lynch cash management account - Criminal law irac example - Why does st louis have colder winters than norfolk - What is the plural of tortoise - Monthly fee commonwealth bank - Dr aydin huq hospitalized - Pathological Conditions in Older Adults - Woolworths termination of employment policy - Nyu bus route f - Siemens rcr10 433 installation manual - What is a star profile in food technology - Case study of pepsi company pdf - Slam note questions list - They say i say chapter 14 pdf - Enterprise risk management syllabus - Dr alan lam st george private hospital - Nursing and Advocacy Through Legislation (Due 24 hours) - Copenhagen 2025 climate plan - Art Analysis - Leadership and management models mgt 410 - Front squat jeff nippard - 49 taloombi street cronulla - ESSAY #7 ART HIST - Latvian song and dance festival 2013 - Human resource essay