1. On Inverting Matrices, using Gauss-Jordan (a) Consider the following matrix A. If the inverse of A exists, com- pute A-1, else say so. A 1 3
INVERSE OF MATRICES 15 (b) Consider the following matrix A. If the inverse of A exists, com- pute A-1, else say so. A-(3) 0 1 (c) Consider the following matrix A. If the inverse of A exists, com- pute A1, else say so. 0 2 (d) Consider the following matrix A. If the inverse of A exists, com- pute A, else say so. 1 2 2 0 0 l
(e) Consider the following matrix A. If the inverse of A exists, com- pute A-1, else say so. 1 2 -2 A 0 0 1 1 2 -1 (f) Consider the following matrix A. If the inverse of A exists, com- pute A-1, else say so. 1 2 2 A-124-3 011 (g) Consider the following matrix A. If the inverse of A exists, com- pute A-1, else say so.
CHAPTER 2. MATRICES (h) Consider the following matrix A. If the inverse of A exists, com- pute A-1, else say so. A=| 0 0 0 1 pute A1, else say so 0 0 1 1 乀0001