Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

Mature stage of mid latitude cyclone

05/12/2021 Client: muhammad11 Deadline: 2 Day

LAB MODULE 8: AIR MASSES AND WEATHER SYSTEMS

LAB MODULE 8: AIR MASSES AND WEATHER SYSTEMS

Note: Please refer to the GETTING STARTED lab module to learn how to maneuver through and answer the lab questions using the Google Earth () component.

Key Terms

You should know and understand the following terms:

Air mass

Cold front

Occluded Front

● Continental (c)

Downburst

Stationary Front

● Maritime (m)

Front

Thunderstorm

● Arctic or Antarctic (A)

Mesocyclones

Tropical Cyclones

● Polar (P)

Microburst

Warm Front

● Tropical (T)

Mid-latitude cyclone

Weather

LAB LEARNING OBJECTIVES

After successfully completing this module, you should be able to the following tasks:

● Identify and describe air masses and their associated moisture and temperature conditions

● Describe fronts and frontal systems

● Identify the evolution and migration of a mid-latitude cyclone in the US

● Identify the mechanisms producing thunderstorms, tornados, and hurricanes

● Interpret maps showing the geographical distributions of severe weather systems

2

INTRODUCTION

This lab module explores air masses, fronts and mid-latitude cyclonic weather systems. Topics include the following: continental and maritime air masses; stationary, cold, warm and occluded fronts; and the patterns and processes of mid-latitude cyclones and severe weather storms. The modules start with four opening topics, or vignettes, which are found in the accompanying Google Earth file. These vignettes introduce basic concepts of weather and severe weather systems. Some of the vignettes have animations, videos, or short articles that will provide another perspective or visual explanation for the topic at hand. After reading the vignette and associated links, answer the following questions. Please note that some links might take a while to download based on your Internet speed.

Expand the INTRODUCTION folder and then select Topic 1: Weather.

Read Topic 1: Weather.

Question 1: Briefly describe the likely weather conditions evident in the picture.

A. Sunny and hot

B. Cloudy and raining

C. Warm and humid

D. Hot and hazy

Read Topic 2: Air Masses.

Question 2: The vignette states why there is no mA classification. Additionally, there is no continental equatorial (cE) classification. What is the primary reason that a cE air mass classification does not exist (Hint: it is the opposite reason of mA)?

A. Because equatorial air masses are moist

B. Because continental air masses are moist

C. Because continental air masses originate over land

D. Because there is no land in equatorial regions

Read Topic 3: The Evolution and Weather Conditions of Fronts.

Question 3: Compare the density and speed of cold air (from the cold front) to warm air (from the warm front)

A. Colder air is lighter and travels faster than warm air

B. Colder air is denser and travels faster than warmer air

3

C. Warmer air lighter and travels faster than colder air

D. Warmer air is denser and travels faster than colder air

Read Topic 4: Human Interaction: Tornado Alley.

Question 4: Why do areas located between 30°N to 50°N provide favorable conditions for tornado generation?

A. Because this region is flat

B. Because this region is where cold arctic air and warm subtropical air converge

C. Because this region is predominantly agriculture

D. Because precipitation is needed for agriculture in this region

Collapse and uncheck the INTRODUCTION folder.

4

GLOBAL PERSPECTIVE

As noted in the vignette, air masses are not randomly distributed across the globe; in fact the geographic origin (source region) of air masses determine each of the six potential air mass types – continental Arctic (cA), continental polar (cP), continental tropical (mT), maritime polar (mP), maritime tropical (mT), and maritime equatorial (mE).

As air masses move around the Earth due to weather conditions, they can gain or lose moisture, or increase or decrease in temperature. For example, a maritime polar (mP) air mass moving across a continent could lose much of its moisture and become a continental polar (cP) air mass.

In this exercise, you will describe the spatial patterns of air masses as they relate to various locations throughout the world.

Verify that Labels (under Borders and Layers) is selected in the Layers panel.

Expand the GLOBAL PERSPECTIVE folder and select the Air Mass folder.

Double-click and select Location A.

Question 5: Identify the principal air mass:

A. mP

B. mT

C. cP

D. cT

Question 6: Identify the air temperature (as very cold, cold, warm, or very warm) and the air humidity (as moist or dry) for the source region of this air mass.

A. Cold and dry

B. Warm and dry

C. Very cold and moist

D. Warm and moist

Double-click and select Location B.

5

Question 7: Identify the principal air mass:

A. mP

B. mT

C. cP

D. cT

Question 8: Identify the air temperature (very cold, cold, warm, or very warm) and the air humidity (moist or dry) for the source region of this air mass.

A. Cold and dry

B. Warm and dry

C. Very cold and moist

D. Warm and moist

Double-click and select Location C

Question 9: Identify the principal air mass:

A. mP

B. mT

C. cP

D. cA

Question 10: Identify the air temperature (very cold, cold, warm, or very warm) and the air humidity (moist or dry) for the source region of this air mass.

A. Cold and dry

B. Warm and dry

C. Cold and moist

D. Warm and moist

Double-click and select Location D.

Question 11: Identify the principal air mass:

A. mP

B. mT

C. cA

D. cT

6

Question12: Identify the air temperature (very cold, cold, warm, or very warm) and the air humidity (moist or dry) for the source region of this air mass.

A. Cold and dry

B. Warm and dry

C. Very cold and dry

D. Warm and moist

Collapse and uncheck the GLOBAL PERSPECTIVE folder.

FRONTS

Fronts are synoptic scale features, meaning they are usually regional or continental in scale, in the order of several hundred to 1000 km (621 miles) or more in length. Synoptic scale weather maps, known as surface weather analysis, use various symbology from known data (pressure, temperature, cloud cover) to determine weather fronts.

On weather maps, the cold front boundary is designated by a blue line of triangle pips, while warm front boundaries are represented by a red line of half-circle pips. Occluded fronts are shown in purple (red+blue) of alternativing triangle and half-circle pips. In all these cases, the side of the line on which the symbol appears indicates the direction of movement of the frontal zone. For stationary fronts, the direction of movement is static, and thus, is represented by the alternation of blue triangles and red half circles shown in opposing directions.

Expand the FRONTS folder.

Select and double-click Cold front.

This symbol depicts a cold front stretching from northern Minnesota to western Nevada.

7

Question 13: In which general direction is the front moving?

A. Northwest

B. Northeast

C. Southwest

D. Southeast

Double-click and select Location E and check Location F.

Question 14: At which location would you expect the air temperature to be warmer?

A. Location E

B. Location F

C. They should be the same temperature

Question 15: Which location would be experiencing thunderstorms?

A. Location E

B. Location F

C. There are thunderstorms at both locations

D. There are not thunderstorms at either location

Uncheck Cold front.

Uncheck Location E.

Double-click and select Warm front.

This symbol depicts a warm front stretching from northern Minnesota to eastern Kentucky.

Check Location G.

Question 16: In which general direction is the front moving?

A. Northwest

B. Northeast

C. Southwest

D. Southeast

Question 17: At which location (F or G) would you expect the air temperature to be warmer?

8

A. Location F

B. Location G

C. They should be the same temperature

Question 18: Would there be rainfall at Location G? If so, briefly describe the intensity (how “hard” it is raining) and duration.

A. No rainfall

B. Rainfall, steady drizzle lasting all day

C. Rainfall, intense rain lasting all day

D. Rainfall, thunderstorms lasting a short period

Collapse and uncheck the FRONTS folder.

MID-LATITUDE CYCLONES

Mid-latitude cyclones are organized low pressure systems that have cold and warm fronts. The development of mid-latitude cyclones is part of the process known as cyclogenesis.

Expand the MID-LATITUDE CYCLONES folder.

Click Migration.

This animation shows the development and migration of a mid-latitude cyclone, as well as satellite imagery (Note: The satellite imagery section might take a few minutes to upload).

Now, you will go through the cyclogenesis of a mid-latitude cyclone on Google Earth.

Return to Google Earth.

Double-click and select Day 1

This map shows a typical initial development of a mid-latitude cyclone. The center of the system has the lowest pressure, which is located along the jet stream (blue arrows). The system travels in an easterly direction along the jet stream, with the

9

warm front leading, followed by the cold front. The stage of cyclogenesis is the open stage.

Uncheck Day 1.

Select Day 2.

The system continues moving eastward along the jet stream. The cold front is traveling faster than the warm front and the distance between the two fronts is decreasing. With the distance between the fronts becoming smaller, cooler air starts to push the warmer air, and the warmer air begins to move upwards. The stage of cyclogenesis is the mature stage.

Uncheck Day 2.

Select Day 3.

Now, the cold front has caught up with the warm front and forms an occluded front. The warmer air is now aloft (above the surface) and precipitation may occur. This stage of cyclogenesis is the occluded stage.

Question 19: In which direction is the air circulation in a developing mid-latitude cyclone?

A. Upwards

B. Downwards

C. Clockwise

D. Counter clockwise

Question 20: Where is the origin of the cold air mass and warm air mass in these examples?

A. Cold from Canada; warm from Eastern US

B. Cold from Western US; warm from Eastern US

C. Cold from Canada; warm from gulf of Mexico

D. Cold from Western US; warm from Pacific Ocean

Question 21: Why does the cold front move faster than the warm front?

A. Because the cold air is lighter and moves faster.

B. Because the warm air is denser and moves more slowly.

C. Because the cold air is denser and moves faster.

10

D. Because the warm air is lighter and moves more slowly.

Question 22: What type of weather do we see during the occluded front?

A. Temperature rising, no rainfall

B. Temperature rising, variable (light to heavy) rainfall

C. Temperature dropping, no rainfall

D. Temperature dropping, variable (light to heavy) rainfall

Question 23: Where does the heaviest rainfall occur - along the cold front or the warm front?

A. Cold front

B. Warm front.

C. Rainfall is equal along both fronts.

D. There is no rainfall along either front.

Collapse and uncheck the MID-LATITUDE CYCLONES folder.

THUNDERSTORMS AND TORNADOS

Thunderstorms

Thunderstorms are formed when parcels of unstable (warm, moist) air are lifted rapidly and vertically from the ground. Lifting mechanisms include convective lifting from the unequal warming of the ground, orographic lifting from air forced over a mountain or similar terrain, or frontal lifting from the leading edge of a cold or warm front. Rapid ascension of unstable air creates strong updrafts (upward moving air) and intense adiabatic cooling (that is, cooling without interacting with the surrounding air). When the updrafts reach the maximum altitude (usually in the troposphere, or over 12 km (40,000 feet) from the Earth’s surface), they change direction and become downdrafts, and precipitate.

Typical thunderstorms have weak updrafts and weak downdrafts. Thunderstorms that produce flash floods have strong updrafts but weak downdrafts. Thunderstorms that produce downbursts (or microbursts) of downward, divergent air have weak updrafts but strong downdrafts. When strong updrafts and down drafts are present severe thunderstorms known as supercells are formed. Associated with these thunderstorms are the anvil shaped cumulonimbus clouds, heavy rains or hail, thunder and lightning, gusts of wind, mesocyclones (strong vertical updrafts that rotate and form a vortex of air), and sometimes tornadoes.

11

Expand the THUNDERSTORMS AND TORNADOS folder.

Click Thunderstorms.

Question 24: At what stage(s) does updraft develop?

A. Cumulus stage

B. Developmental stage

C. Mature stage

D. Dissipation stage

Question 25: At what stage(s) does the atmosphere cool and stabilize?

A. Cumulus stage

B. Developmental stage

C. Mature stage

D. Dissipation stage

Tornadoes

Tornadoes form as a result of strong updrafts combined with wind shear (the difference in wind direction and speed with altitude). The combination changes the rotation of air from a horizontal axis to a vertical axis. When the funnel reaches the ground, it has evolved into a tornado.

Click Tornado Formation for the animation of the evolution of a tornado and practice categorizing tornadoes using the Enhanced Fujita Scale.

Question 26: What does an area look like when it is hit by a EF2 tornado?

A. Roofs stripped, mobile homes flipped over, windows broken

B. Large trees uprooted, mobile homes destroyed, roofs ripped off houses

C. Siding stripped, Shingles peeled off roofs, tree branches broken

D. Several damage to shopping centers, cars thrown about

Question 27: What does an area look like when it is hit by a EF4 tornado?

A. Roofs stripped, mobile homes flipped over, windows broken

12

B. Large trees uprooted, mobile homes destroyed, roofs ripped off houses

C. Siding stripped, Shingles peeled off roofs, tree branches broken

D. Devastating damage, cars thrown about

Select Tornado Tracks and Icons.

The following tornado data is from the NOAA National Weather Service. Tornados have been classified by the original Fujita Scale (the tornado scale used until 2007); classification ranges from F0 to F5.

Uncheck Tornado Tracks and Icons.

Double-click and expand Tornadoes by F-scale.

Select F0.

F0 are the weakest tornados, and have the least amount of damage. They are also the most common.

Question 28: Which states west of the Mississippi River do not have an F0 tornado recorded?

A. Nevada

B. Utah

C. Washington

D. Every state west of the Mississippi River has had an F0 tornado.

Unselect F0 and then select F1. Note the geographic distribution of tornadoes at this strength.

Repeat F2-F5.

Question 29: How has the frequency and location of tornados changed as the strength increases?

A. The frequency increases and location tends to be in the east half of the US

B. The frequency increases and the location is somewhat random

C. The frequency decreases and location tends to be in the east half of the US

13

D. The frequency decreases and the location is somewhat random

Collapse and uncheck Tornadoes by F-scale.

Expand Tornadoes by Month. Select and examine each month.

Question 30: Which couple of months has the most tornadoes?

A. January/February

B. April/May

C. July August

D. August/September

Collapse and uncheck THUNDERSTORMS AND TORNADOS.

TROPICAL CYCLONES

Tropical cyclones have different names, depending on where they develop. In the Atlantic and eastern Pacific Oceans, they are called hurricanes. In the Indian Ocean they are known as cyclones and in the eastern Pacific they are identified as typhoons.

Tropical cyclones are storm systems of low pressure surrounded by a complex spiral of thunderstorms. Unlike mid-latitude cyclones, tropical cyclones do not form in regions with fronts. Rather, hurricanes develop where the atmosphere is relatively homogenous - but with a high pressure aloft to “cap” the low pressure storm. These storm systems rely on energy from warm water to develop, and as such, form in low latitudes.

Expand TROPICAL CYCLONES.

Expand Historical Hurricane Tracks.

Select Legend and then double-click and select Atlantic: 2000-2012 (Note: The imagery might take a few minutes to upload).

Question 31: Explain the general pathway of hurricanes in the Atlantic Ocean.

A. They form in different places, but generally end up off the coast of Africa

B. They travel east across the Atlantic before diverging

C. The pathways are random in direction

14

D. They travel west across the Atlantic before diverging

Uncheck Atlantic: 2000-2012.

Double-click and select Eastern North Pacific 2000-2012 (Note: The imagery might take a few minutes to upload).

Question 32: Explain the general pathway of typhoons in the eastern Pacific Ocean.

A. They generally form off the coast of Mexico and head toward Hawai’i

B. They form in different places, but generally end up off the coast of Mexico

C. They travel east across the Pacific before diverging

D. The pathways are random in direction

Collapse and uncheck Historical Hurricane Tracks.

Expand and double-click Hurricane Katrina - 2005. To close the citation, click the X in the top right corner of the window.

Select Katrina Landfall Video. Watch the time lapse of Hurricane Katrina as it hits Louisiana.

Double-click and select Tracks and view the pathway of this hurricane from the Caribbean Sea to North America.

Select Hurricane.

Question 33: Geographically, where was Hurricane Katrina the strongest (an H5 –shown as a red circle)?

A. In the Atlantic Ocean

B. In the Caribbean sea

C. In the Gulf of Mexico

D. New Orleans, LA

Question 34: What happened to the Hurricane once it hit land?

A. It dissipated

B. It continued north at the same strength

15

C. It continued north but with decreasing strength

D. It became a tropical storm

Collapse and uncheck Hurricane Katrina.

Double-click and select Hurricane Sandy.

Hurricane Sandy is considered the largest hurricane ever recorded in the Atlantic basin, measuring in at over 1100 miles (1800 km) in diameter.

Question 35: True or False: The storm system that hit New Jersey and the surrounding area on October 29 was a tropical cyclone.

A. True

B. False

Question 36: Explain your answer in the previous question.

A. Tropical cyclones do not travel that far north

B. Tropical cyclones do not occur this last in the year

C. Its inner core was less defined than that required of a tropical cyclone

D. Sustained wind speed, low atmospheric pressure an

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Top Academic Guru
Best Coursework Help
Professor Smith
Assignment Helper
24/7 Assignment Help
Homework Master
Writer Writer Name Offer Chat
Top Academic Guru

ONLINE

Top Academic Guru

I have done dissertations, thesis, reports related to these topics, and I cover all the CHAPTERS accordingly and provide proper updates on the project.

$43 Chat With Writer
Best Coursework Help

ONLINE

Best Coursework Help

I will provide you with the well organized and well research papers from different primary and secondary sources will write the content that will support your points.

$46 Chat With Writer
Professor Smith

ONLINE

Professor Smith

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$35 Chat With Writer
Assignment Helper

ONLINE

Assignment Helper

I have assisted scholars, business persons, startups, entrepreneurs, marketers, managers etc in their, pitches, presentations, market research, business plans etc.

$19 Chat With Writer
24/7 Assignment Help

ONLINE

24/7 Assignment Help

As per my knowledge I can assist you in writing a perfect Planning, Marketing Research, Business Pitches, Business Proposals, Business Feasibility Reports and Content within your given deadline and budget.

$37 Chat With Writer
Homework Master

ONLINE

Homework Master

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$36 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Unlike its competitors in the online air travel industry - Accounting for business decisions b - Loughborough university psychology department - Music - Indian education sherman alexie rhetorical analysis - Deportation at breakfast questions and answers - Erik erikson psychosocial stages activity worksheet answers - Evidenced base - Manual pipe rolling machine - Air ontario flight 1363 flight attendant - Human reflex physiology lab - Pepsico diversification strategy - Managing marketing information to gain customer insights ppt - Real time billing system - Webscarab kali linux - Describe and evaluate two theories of the formation of relationships - Sample mean and population mean symbols - General holmes drive maccas - Are the particles in a suspension colloid or emulsion soluble - Chemical equation of elephant toothpaste - Evaluation of termination possibilities - Del lago partners v smith - Functions of international financial market - 9 undine street ellalong - Combat fire inc manufactures steel cylinders - Latrobe exam timetable 2021 semester 2 - Drawing magnetic field lines worksheet - Stardom gem in bejeweled blitz - Figs and wasps video - Calcium chloride and potassium carbonate equation - Dulux hog bristle exterior - Why students should be able to use cellphones in school - Standardized vocabulary is needed to - Pumicestone passage fishing zones - What are you grateful for today - Finance questions - Nursing and Community (Due 24 hours) - Assignment - Adverse possession victoria 15 years - Api rp 14c 2017 pdf - Fluctuations and reductions in estrogen may be a contributing factor in which type of rhinitis? - Capacitor charging voltage graph - Every image embodies a way of seeing - Problem preparing a payroll register - Past tense of irate - Pes statement diagnosis list - Master business license wa - Only For bennetsandova other Please dont respond(in 12 hours) - Budgeted cash disbursements for merchandise purchases - Operational Excellence - Purpose of a bed stick - Ti-nspire calculus cheat sheet - State based action coalitions - Dux hot water thermostat adjustment - Values are important to human service professionals because they - Informatics and nursing opportunities and challenges - Assignment 2 - What is e recruitment - Don't come near me - Ent outpatients victoria hospital kirkcaldy - East farleigh primary school - Aloha airlines flight 243 death - Discussion 1.2 - Long distance mousetrap car - A doll's house marriage - Blockchain - Abercrombie and fitch has had multiple diversity concerns including - Chemistry form ws5 5.2 a answer key - Postpartum depression - Research based position paper sun - Consider the following relation for published books - Over 25 learner drivers wa - Social construction - Dr anita shetty haematologist - Seven domains of typical it infrastructure - Transition to Graduate Study - Design capacity and effective capacity examples - What does the matchmaker criticize mulan for - Pencil thin moustache chords - Case 2 537 - Is provider sponsored organization a gatekeeper - CM ASSG 3 - Robin hood case study swot - Exercise 5 9 part level submission - Discussion #2 Initial Post - Airius destratification fans price list - Hume libraries vic gov au - Public relations lecture notes - Teresa supo que hice una fiesta y no la invité. ahora está enojada conmigo. - Black and gold methylated spirits msds - 0.2 m acetate buffer - Which one of the following metals has the highest density - Jane eyre summary sparknotes - Eea qp form download - A bank quotes an interest rate of - Fundamentals of discrete mathematics - Moral choices 4th edition pdf - Point wilson boat ramp - Zoot suit summary - Abbreviated electron configuration iridium