Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

She's come undone wally lamb sparknotes

17/11/2021 Client: muhammad11 Deadline: 2 Day

Write A Python Code On The Anaconda Navigator

Resource Information
In this assignment, you should work with books.csv file. This file contains the detailed information about books scraped via the Goodreads . The dataset is downloaded from Kaggle website: https://www.kaggle.com/jealousleopard/goodreadsbooks/downloads/goodreadsbooks.zip/6

Each row in the file includes ten columns. Detailed description for each column is provided in the following:

bookID: A unique Identification number for each book.
title: The name under which the book was published.
authors: Names of the authors of the book. Multiple authors are delimited with -.
average_rating: The average rating of the book received in total.
isbn: Another unique number to identify the book, the International Standard Book Number.
isbn13: A 13-digit ISBN to identify the book, instead of the standard 11-digit ISBN.
language_code: Helps understand what is the primary language of the book.
num_pages: Number of pages the book contains.
ratings_count: Total number of ratings the book received.
text_reviews_count: Total number of written text reviews the book received.
Task
Write the following codes:
Use pandas to read the file as a dataframe (named as books). bookIDcolumn should be the index of the dataframe.
Use books.head() to see the first 5 rows of the dataframe.
Use book.shape to find the number of rows and columns in the dataframe.
Use books.describe() to summarize the data.
Use books['authors'].describe() to find about number of unique authors in the dataset and also most frequent author.
Use OLS regression to test if average rating of a book is dependent to number of pages, number of ratings, and total number of written text reviews the book received.
Summarize your findings in a Word file.
Instructions
Please follow these directions carefully.
Please type your codes in a Jupyter Network file and your summary in a word document named as follows:
HW6YourFirstNameYourLastName.

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python Basics (Instructor: Dr. Milad Baghersad)\n", "## Module 6: Data Analysis with Python Part 1\n", "\n", "- Reference: McKinney, Wes (2018) Python for data analysis: Data wrangling with Pandas, NumPy, and IPython, Second Edition, O'Reilly Media, Inc. ISBN-13: 978-1491957660 ISBN-10: 1491957662\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "___\n", "___\n", "___\n", "### review: Numpy (https://www.numpy.org/)\n", "NumPy, short for Numerical Python, is one of the most important foundational packages for numerical computing in Python.\n", "\n", "One of the key features of NumPy is its N-dimensional array object, or ndarray, which is a fast, flexible container for large datasets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the\n", "equivalent operations between scalar elements." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "b = np.array([[ 0, 1, 2, 3, 4],\n", " [ 5, 6, 7, 8, 9],\n", " [10, 11, 12, 13, 14]])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(b)\n", "type(b)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(b.sum(axis=0)) # sum of each column" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.ones( (5,4) )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1)\n", "np.random.rand(4,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "---\n", "---\n", "# pandas (https://pandas.pydata.org/)\n", "\n", "- Developed by Wes McKinney.\n", "- pandas contains data structures and data manipulation tools designed to make data cleaning and analysis fast and easy in Python.\n", "- While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. \n", "- NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n", "- Can be used to collect data from different sources such as Yahoo Finance!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data = np.random.rand(4,2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "type(my_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### change the array to a pandas dataframe:\n", "A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df = pd.DataFrame(my_data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "type(my_data_df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#assign columns name\n", "my_data_df = pd.DataFrame(my_data,columns=[\"first column\", \"Second column\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#assign rows name\n", "my_data_df = pd.DataFrame(my_data,columns=[\"first column\", \"Second column\"],index=['a', 'b', 'c', 'd'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#There are many ways to construct a DataFrame, though one of the most common is\n", "# from a dict of equal-length lists or NumPy arrays:\n", "data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],\n", " 'year': [2000, 2001, 2002, 2001, 2002, 2003],\n", " 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t = pd.DataFrame(data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#For large DataFrames, the head method selects only the first five rows:\n", "data_t.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t.tail()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#If you specify a sequence of columns, the DataFrame’s columns will be arranged in that order:\n", "pd.DataFrame(data, columns=['year', 'state', 'pop'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2 = pd.DataFrame(data, columns=['year', 'state', 'pop'])\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2.set_index('year',inplace=True)\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#If you pass a column that isn’t contained in the dict, it will appear with missing values in the result:\n", "data_t2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],\n", " index=['one', 'two', 'three', 'four', 'five', 'six'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t2.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#retrieving a column by dict-like notation \n", "data_t2[\"state\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# or by attribute:\n", "data_t2.state" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Rows can be retrieved by position or name with the special loc attribute:\n", "data_t2.loc['three']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Columns can be modified by assignment. \n", "data_t2['debt'] = 16.5" ] }, { "cell_type": "code", "execution_count": null, "metadata": {},

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Smart Tutor
Premium Solutions
Engineering Mentor
Chartered Accountant
Quick N Quality
Pro Writer
Writer Writer Name Offer Chat
Smart Tutor

ONLINE

Smart Tutor

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$33 Chat With Writer
Premium Solutions

ONLINE

Premium Solutions

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$18 Chat With Writer
Engineering Mentor

ONLINE

Engineering Mentor

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$15 Chat With Writer
Chartered Accountant

ONLINE

Chartered Accountant

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$21 Chat With Writer
Quick N Quality

ONLINE

Quick N Quality

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$24 Chat With Writer
Pro Writer

ONLINE

Pro Writer

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$25 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Coca cola push and pull strategy - Blank rock cycle diagram - Organizational analysis paper - Cafod ash wednesday liturgy - Charlemagne had the most profound influence on which continent - Externalism in epistemology is an approach to rationality which argues that - Femme connection ingle farm - A credit granted to a customer for returned goods requires a debit to - Example of depression in math - Social gains in crisis communications - The watch company manufactures trendy - The Corrections System - A feasible solution violates at least one of the constraints - G polya how to solve it - Aviation research topics for students - Psychologists use different levels of analysis that offer complementary outlooks - Please no plagiarism work would be running through before turn in. need these assignments done and returned with by the 12 or sooner - Discussion: Using the AD-AS Model to Explain Macroeconomic Fluctuations - Pka value of p nitrophenol - 6230 coburg road halifax - Origin of the red cross emblem - American his. - Post dam area denture - Crayon dentist irvington new jersey - Chapter 31 health assessment and physical examination - Kurrimine beach fishing comp - Lance h and wanda b dean - Lillian and frank gilbreth - Thunder energies discovers invisible entities - Newsgothicbt romancondensed - 14,15 - ETH321 Week 1 Apply Exercise SCORE 78 PERCENT - Safaricom mission statement - Ecosystem approach 2 - Argumentative essay about education should be free for everyone - Application of double integral - DUALISM VS PHYSICALISM - Costco supply chain case study - Motel 6 commercial voice - Darry from the outsiders - Human resources management / organizational behaviour - The sapa project personality test - Discussion - Acted notes free download - Line start pm motor - Annotated bibliography 1 - Week 1 Discussion Forum - Hendrick hudson v rowley case brief - Mandalay bay hotel how many floors - How successful is change4life - LOVE GURU【≽+91-9829644411≼】Love Vashikaran Specialist Molvi Ji - MYASTHENIA GRAVIS - Economic exam - Suppose improvement occurs in the technology of producing forklifts - 2 - Pestle analysis of healthcare industry in usa - What organelle am i - Essay precis writing and comprehension books - Walmart in japan case study solution - Unit 1 assignment 2 business - Choosing a Roommate - The invention of wings setting - What is strategic compensation - What is the payback period for the cash flows - Solve the following - Erik erikson stages worksheet - Henry luce's the american century quizlet - Psychological first aid questions and answers - Buzzfeed the promise of native advertising - 1776 by david mccullough chapter 1 summary - Modern family a fair to remember harold grossman - La enfermera siempre me toma la temperatura. - Special consideration usyd form - Imex global solutions careers - Colgate palmolive promotion strategy - Gale force surfing case study - The castle language techniques - Food Avoidances - Convention on biological diversity australia - Pico question examples for pressure ulcers - Week iv pt2B - Benzoic acid reaction with grignard reagent - Religion and Ethics APA need done ASAP! - Life in angola documentary - Apple inc risk analysis - The Role of the RN/APRN in Policy Evaluation - Watson fellowship proposal example - African child chapter by chapter summary - Bex web application designer step by step - Air force platform information technology pit cybersecurity guidebook - How to convert rev/min to rad/s - Week4 - Comp1 - Assignment 4 mobile devices and self service e commerce - Council of clermont 1095 - Statement of environmental effects ryde - Electric field mapping lab report theory - SOCW 6111 - Queens step test metronome - Sans business continuity plan