Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

She's come undone wally lamb sparknotes

17/11/2021 Client: muhammad11 Deadline: 2 Day

Write A Python Code On The Anaconda Navigator

Resource Information
In this assignment, you should work with books.csv file. This file contains the detailed information about books scraped via the Goodreads . The dataset is downloaded from Kaggle website: https://www.kaggle.com/jealousleopard/goodreadsbooks/downloads/goodreadsbooks.zip/6

Each row in the file includes ten columns. Detailed description for each column is provided in the following:

bookID: A unique Identification number for each book.
title: The name under which the book was published.
authors: Names of the authors of the book. Multiple authors are delimited with -.
average_rating: The average rating of the book received in total.
isbn: Another unique number to identify the book, the International Standard Book Number.
isbn13: A 13-digit ISBN to identify the book, instead of the standard 11-digit ISBN.
language_code: Helps understand what is the primary language of the book.
num_pages: Number of pages the book contains.
ratings_count: Total number of ratings the book received.
text_reviews_count: Total number of written text reviews the book received.
Task
Write the following codes:
Use pandas to read the file as a dataframe (named as books). bookIDcolumn should be the index of the dataframe.
Use books.head() to see the first 5 rows of the dataframe.
Use book.shape to find the number of rows and columns in the dataframe.
Use books.describe() to summarize the data.
Use books['authors'].describe() to find about number of unique authors in the dataset and also most frequent author.
Use OLS regression to test if average rating of a book is dependent to number of pages, number of ratings, and total number of written text reviews the book received.
Summarize your findings in a Word file.
Instructions
Please follow these directions carefully.
Please type your codes in a Jupyter Network file and your summary in a word document named as follows:
HW6YourFirstNameYourLastName.

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Python Basics (Instructor: Dr. Milad Baghersad)\n", "## Module 6: Data Analysis with Python Part 1\n", "\n", "- Reference: McKinney, Wes (2018) Python for data analysis: Data wrangling with Pandas, NumPy, and IPython, Second Edition, O'Reilly Media, Inc. ISBN-13: 978-1491957660 ISBN-10: 1491957662\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "___\n", "___\n", "___\n", "___\n", "### review: Numpy (https://www.numpy.org/)\n", "NumPy, short for Numerical Python, is one of the most important foundational packages for numerical computing in Python.\n", "\n", "One of the key features of NumPy is its N-dimensional array object, or ndarray, which is a fast, flexible container for large datasets in Python. Arrays enable you to perform mathematical operations on whole blocks of data using similar syntax to the\n", "equivalent operations between scalar elements." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "b = np.array([[ 0, 1, 2, 3, 4],\n", " [ 5, 6, 7, 8, 9],\n", " [10, 11, 12, 13, 14]])\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(b)\n", "type(b)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "print(b.sum(axis=0)) # sum of each column" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "np.ones( (5,4) )" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Create an array of the given shape and populate it with random samples from a uniform distribution over [0, 1)\n", "np.random.rand(4,2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "---\n", "---\n", "---\n", "# pandas (https://pandas.pydata.org/)\n", "\n", "- Developed by Wes McKinney.\n", "- pandas contains data structures and data manipulation tools designed to make data cleaning and analysis fast and easy in Python.\n", "- While pandas adopts many coding idioms from NumPy, the biggest difference is that pandas is designed for working with tabular or heterogeneous data. \n", "- NumPy, by contrast, is best suited for working with homogeneous numerical array data.\n", "- Can be used to collect data from different sources such as Yahoo Finance!" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import pandas as pd" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data = np.random.rand(4,2)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "type(my_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### change the array to a pandas dataframe:\n", "A DataFrame represents a rectangular table of data and contains an ordered collection of columns, each of which can be a different value type (numeric, string, boolean, etc.)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df = pd.DataFrame(my_data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "type(my_data_df)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df.shape" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#assign columns name\n", "my_data_df = pd.DataFrame(my_data,columns=[\"first column\", \"Second column\"])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#assign rows name\n", "my_data_df = pd.DataFrame(my_data,columns=[\"first column\", \"Second column\"],index=['a', 'b', 'c', 'd'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "my_data_df" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#There are many ways to construct a DataFrame, though one of the most common is\n", "# from a dict of equal-length lists or NumPy arrays:\n", "data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],\n", " 'year': [2000, 2001, 2002, 2001, 2002, 2003],\n", " 'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t = pd.DataFrame(data)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#For large DataFrames, the head method selects only the first five rows:\n", "data_t.head()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t.tail()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#If you specify a sequence of columns, the DataFrame’s columns will be arranged in that order:\n", "pd.DataFrame(data, columns=['year', 'state', 'pop'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2 = pd.DataFrame(data, columns=['year', 'state', 'pop'])\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "df2.set_index('year',inplace=True)\n", "df2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#If you pass a column that isn’t contained in the dict, it will appear with missing values in the result:\n", "data_t2 = pd.DataFrame(data, columns=['year', 'state', 'pop', 'debt'],\n", " index=['one', 'two', 'three', 'four', 'five', 'six'])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_t2.columns" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#retrieving a column by dict-like notation \n", "data_t2[\"state\"]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# or by attribute:\n", "data_t2.state" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Rows can be retrieved by position or name with the special loc attribute:\n", "data_t2.loc['three']" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Columns can be modified by assignment. \n", "data_t2['debt'] = 16.5" ] }, { "cell_type": "code", "execution_count": null, "metadata": {},

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Smart Tutor
Premium Solutions
Engineering Mentor
Chartered Accountant
Quick N Quality
Pro Writer
Writer Writer Name Offer Chat
Smart Tutor

ONLINE

Smart Tutor

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$33 Chat With Writer
Premium Solutions

ONLINE

Premium Solutions

I am a PhD writer with 10 years of experience. I will be delivering high-quality, plagiarism-free work to you in the minimum amount of time. Waiting for your message.

$18 Chat With Writer
Engineering Mentor

ONLINE

Engineering Mentor

This project is my strength and I can fulfill your requirements properly within your given deadline. I always give plagiarism-free work to my clients at very competitive prices.

$15 Chat With Writer
Chartered Accountant

ONLINE

Chartered Accountant

I have read your project details and I can provide you QUALITY WORK within your given timeline and budget.

$21 Chat With Writer
Quick N Quality

ONLINE

Quick N Quality

I can assist you in plagiarism free writing as I have already done several related projects of writing. I have a master qualification with 5 years’ experience in; Essay Writing, Case Study Writing, Report Writing.

$24 Chat With Writer
Pro Writer

ONLINE

Pro Writer

I reckon that I can perfectly carry this project for you! I am a research writer and have been writing academic papers, business reports, plans, literature review, reports and others for the past 1 decade.

$25 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Yo yo ma necessary edges summary - Toms shoes annual report 2015 - Http www choosemyplate gov food groups - Examples of active publics - Iuhpe core competencies and professional standards for health promotion - What is dpe in special education - Discussion: Evaluating Purpose Statements - Howards storage gepps cross - Mykolas romeris university courses - Lección 5 lesson test answers - The mmpi was originally developed to identify - Cisco callmanager attendant console - Case Study: PLAAFP and Annual Goals - Deliverable 3 - Change Management Roles - First national bank dress code - Define useful capacity measures for a brewery - Break even sales under present and proposed conditions - The world is flat discussion questions and answers - Carta continuous adaptive risk and trust - U.S. Film And Theater Studies - Swansea my uni hub - Assignment: Exploring Your Bias: Going Deeper - Part C - Woodlands medical practice chadderton - Curbing business for sale $12 000 - Context of porphyria's lover - Suspended ceiling grid screwfix - Java bank account program - The greatest journey pdf - Pyxis medstation es system station tutorial assessment for nursing answers - Low volume vehicle certification plate - Measuring the three components of shyness - Lowest investment grade bond rating - Capitalization of project costs - University of ottawa political science - Dogs nsw code of ethics - The protocols of the elders of zion pdf - Sleep number assembly guide - Constantine becomes a christian - Flywheel and doom loop - Scientific advances in supporting wellness - Wife of bath shmoop - Pb mg no3 2 - Rsea safety wingfield wingfield - Reflection of threats to sea turtles(150words) - 7 important historical events that you believe influence sexuality today - Quality control bio rad - Accounting identifying recording communicating - Harvard hawaii gambled on market calm then everything changed - Nanda nursing diagnosis for lymphedema - Cloud Computing - Interaction design 5th edition pdf - Mason advertising agency was founded in january - Brief reflections on childhood trauma and society bruce d perry - Stratco roller door installation guide - Mise en scene editing - A wagner matinee conflict - Honework help - Durbin watson statistic in excel - The zero exponent rule - Physical Security - Radiometrix ntx2 raspberry pi - Swedbank currency exchange calculator - Bus Cont Plan&Disas Recov Plan - Defining Innovation as Creative Destruction - A storage tank contains kg of nitrogen - Raf brize norton departures - Accounting - Culture Analysis Paper - What is 25 feet long - Discussion data visualization - Year 11 biology practice exam pdf - Paul kirk contribution to forensics - Leadership and management models mgt - The spirit catches you and you fall down citation apa - Bim 360 model coordination workflow - Who invented the camera obscura - El yunque food web - Avon pension fund forms - Mr heck tate to kill a mockingbird - Assignment on marketing mix of pepsi - 200 joules to volts - Example of decision making under certainty - H&m supply chain strategy case study - Picture book analysis example - How long is a 10 minute speech - The managerial process of crafting and executing strategy - Advanced diploma of conveyancing fns60311 - Great gatsby boat tour - Swatch annual report 2015 - Blake mouton managerial grid questionnaire - Pricing strategy of nestle chocolates - How colleges change understanding leading and enacting change - Concert Report #1: Western classical music - Royal derby hospital switchboard - Toyota strategic management case study - Proficiency Level Analysis- Please pay close attention to directions and the rubric. I'm looking for 100% - Pico question examples stroke - Methylation of DNA - Qualities of king david as a leader - An introduction to moral philosophy by jonathan wolff