After entering the experimental data in the table, you should automatically see them being plotted in the graph window. As a good scientific habit, you always want to show only collected data points without the line in between them. Let's get one more point. Now let's adjust 10 volts-- no 20 volts. Let's see can we do exactly 20? Yeah, here's 20 volts. And my voltage is 19.42, and 0.06 ampere. Go Logger Pro, enter this data. 19.42, current is 0.06.
After entering the experimental data in a table, you should automatically see them being plotted in a graph window. As a good scientific habit, you always want to show only the collected data points, without the line in between them. Just show only the
data points without the line between them. So double-click on the graph window, and check the option Connect Points. Uncheck this Connect Points option and click that. You will see only the data on your graph window.
After getting all the data, apply linear feed to your set of data. Double-click on the small window with the feed parameters and select Show Uncertainty. From the slope, calculate the resistance of the virtual pencil. Propagate the uncertainty in the slope into the uncertainty in the experimental resistance of pencil.
Then follow the instruction provided in lab manual to rescale the whole graph window to about half of the available screen space. You can rescale the graph without covering the data table. Just be sure you have data table available, and make your graph half over to your screen. Insert second graph, displaying the resistance calculated in third column on both axes of the new graph. Now insert new graph.
With the resistance calculated on both axes. Resistance should be on the y-axis and on the x-axis. Again uncheck the Connect Points option, rescale this graph window to fit into space remaining on the page. By dragging around with the mouse, select all data points of this plot and apply statistics. When you get all of your data points select all the data points by dragging them with the mouse and select Statistics. I click on Statistics button here. Or you can get it from Analyze menu. We can go Analyze and get Statistics from here or from there. Save the logger profile for your future reference.
How does the mean value displayed in the statistics window-- when you get statistics you see the mean value of the resistance. How does that mean value compare to the resistance computed from the slope of the first graph? From the slope of the first graph, you will calculate the resistance from there and compare the mean value of the resistance from the second graph. Start to measure the resistance of the virtual pencil lead, along with its uncertainty. Capture the screen with the Logger profile, and paste it into a Word file, and attach it to your lab report.
If you assume that the virtual pencil lead was made out of material of resistivity rho equals 3.5 times 10 to the negative 4 ohm times meter. Which is not pure graphite, it is composition of graphite.
And the diameter of the lead was 0.6 millimeter. How long was the pencil? You need to consider rho is given, the diameter is given. You need to calculate-- from your experiment you are measuring the resistance-- you need to calculate the length of the pencil lead.
Part two. Investigating resistive properties of a light bulb. KET Virtual Physics Lab using your username and password. Just follow the link in your lab manual. Log in. Click the labs and select lab 16, DC circuits. Before running simulation, read the full description and detailed information. Here is DC circuit, run this lab now.
Connect the circuit shown below. In your diagram, you'll see there is battery, switch, ohmmeter, light bulb, and voltmeter. Pay attention that ohmmeter is connected with the light bulb in series and the voltmeter is connected to the light bulb in parallel. And the switch is open.
Let's start building the-- connecting the circuit. We need the battery. We need wires. One more wire. Switch. Let's put one more wire and then ohmmeter. Where is-- there is my ohmmeter. OK, one more wire. Then we will go-- a second wire, I have to rotate this here. And get the light bulb. As you can see in your picture. And then you go just one more wire here. One long wire to the other end and complete the circuit by touching here.
Now we need to connect our voltmeter. That is my voltmeter let's put one wire here. I can put here the voltmeter. Let's make it exactly what you see on the lab manual. And complete this part. We built the circuit shown there. Please note the ohmmeter now is connected in series, and the voltmeter is connected in parallel to the light bulb. If you close the switch you will measure the current in your circuit by ohmmeter and they will measure the voltage drop on light bulb.
Click on the battery and adjust the voltage to be one volt. Just use this arrow, or you can