Loading...

Messages

Proposals

Stuck in your homework and missing deadline? Get urgent help in $10/Page with 24 hours deadline

Get Urgent Writing Help In Your Essays, Assignments, Homeworks, Dissertation, Thesis Or Coursework & Achieve A+ Grades.

Privacy Guaranteed - 100% Plagiarism Free Writing - Free Turnitin Report - Professional And Experienced Writers - 24/7 Online Support

What figure has 5 vertices

04/10/2021 Client: muhammad11 Deadline: 2 Day

I need to know of a shape that has 4 sides and 3 vertices.

There is no planar figure with 4 sides and 3 vertices. 3 vertices and 3 sides define the minimal planar shape of the triangle. The addition of a 4th side would require 2 additional sides and 1 vertex to create a pyramidal shape having 6 sides and 4 vertices.

An examination of three dimensional polyhedra will also lead to no solution.

Finding regular polyhedra given the number of edges

A convex polyhedron is defined as a solid with flat faces and straight edges so configured as to have every edge joining two vertices and being common to two faces.

There are many convex polyhedra, only five of which are considered regular polyhedra. Regular polyhedra satisfy three criteria. All the faces are congruent. All faces have the same number of edges equal to, or greater than, three. Each vertex joins the same number of edges. The five regular polyhedra are the tetrahedron, cube, octahedron, dodecahedron and the icosahedron.

Euler's famous equation, v - e + f = 2, applies to all convex polyhedra where v equals the number of vertices, e equals the number of edges and f equals the number of faces.

Given the number of edges of a regular polyhedron, is it possible to determine the numbers of faces and vertices knowing that v - e + f = 2. It is possible given that the given number of edges does, in fact, represent a real convex polyhedron in the first place. Given just any number, there will not always be a polyhedron with that number of edges.

The smallest number of edges possible is 6 for the 4 sided tetrahedron consisting of 4 equilateral triangles joined along their edges to form a 3 sided pyramid. Not knowing the form of the polyhedra that contains the 6 edges, it is possible to derive the specific polyhedron having 6 edges. Given that v + f = e + 2 = 8, the only possible pairs of v and f are 3-5, 4-4, 5-3. If each face has m edges, then mf = 2e = 12. Similarly, if each vertex joins n edges, nv = 2e = 12. "m" must be 3 or greater leaving us with possible m's of 3, 4, or 6 and faces of 4, 3, or 2. Having already shown that "f" must be 5, 4, or 3, we are left with 4 or 3 as the only possible values for "f". Clearly 3 faces cannot form a closed convex polyhedron, leaving us with m = 3 and 4 faces. Knowing that we have 4 faces, "v" is also 4 and our polyhedron with 6 edges has 4 faces and 4 vertices, the tetrahedron.

Following this same path for other polyhedra is not as easy. What if the number of edges e = 12? We therefore know that v + f = 14 giving us possible combinations of v and f of 3-11, 4-10, 5-9, 6-8, 7-7, 8-6, 9-5, 10-4 and 11-3.

At this point, let me introduce two other useful facts about convex polyhedra. The number of vertices is at least 2 more than half the number of faces or v = f/2 + 2. Similarly, the number of faces is at least 2 more than half the number of vertices or f = v/2 + 2. Applying these two rules to our list of possible v's and f's, we end up with only 6-8 and 8-6 as viable candidates. Now we must take note of another piece of information that we can deduce very easily from what we have already explored. We already derived the only regular convex polyhedron with 3 edged (triangular) faces. The polyhedron we seek with 12 edges must therefore have faces containing at least 4 edges. Lets assume that each face has 4 edges and see where it takes us. If each face does, indeed, have 4 edges, we can the write, as we did above, 4f = 2e = 24 making f = 6 and v = 8. What have we here? By golly, the cube, a convex polyhedron having 6 congruent faces, 8 vertices and 12 edges.

Before moving on, I wonder whether you might have observed, or discovered, something that I failed to make obvious during the derivation of our cubic polyhedron? I deliberately led you down the path of concluding that the 4 edged face was the next regular convex polyhedron possible with 12 edges. Lets take a step backward for a minute and observe that the two "v" and "f" possibilities that remained after applying the two vertex and face rules were 6-8 and 8-6. By assuming that our next regular polyhedron had faces with 4 edges, we literally ignored the outside possibility that there might be another regular convex polyhedron with 3 edged faces. If I wrote 3f = 2e = 24, we would end up with f = 8 and v = 6. Is there a convex regular polyhedron with such characteristics? Yes, of course, or I wouldn't have taken you down this path in the first place. What if you created two 4 sided pyramids, each face being the same equilateral triangle, and joined them together at the square base. We end up with the octahedron having 8 faces, 6 vertices and 12 edges.

Now that we have mastered the 6 and 12 edged polyhedra, what if the number of edges e = 30?
With v + f = 32 we have candidates ranging from 4-28 to 28-2 which reduce to 12-20, 14-18, 16-16, 18-14 and 20-12 after applying the "v" and "f" rules. Before leaping ahead again, might there be another 3 edged face polyhedron? If we write 3f = 60 we end up with f = 20 and v = 12, one of our candidate polyhedrons. While not so obvious now, in reality, these values apply to the icosahedron, the regular convex polyhedron having 20 equilateral triangle faces, 12 vertices and 30 edges.

Little thought need be given to the possibility of another 4 edged face polyhedron as there is no way that additional square faces can be included within or around the cube to create another square faced polyhedron.

This leads us to move on to the 5 edged face, the pentagonal face. If we now write 5f = 60, we derive f = 12 and v = 20. Does this represent any polyhedron? Yes, the dodecahedron having 12 pentagonal faces, 20 vertices and 30 edges.

So far, we have deliberately explored the regular convex polyhedra as they were fairly easy to define. What about the irregular or prismatic polyhedra? What if we were given an e = 10? We then have v + f = 12 giving us possible "v" and "f" values of 4-8, 6-6, and 8-4 (2-10 or 10-2 are not viable as "v" must be 3 or greater as does the number of edges per face. Applying the "v" and "f" rules, the 4-8 and 8-4 drop out of the picture and we are left with the viable 6-6 candidate. If we try for triangular faces, 3f = 20 which has no solution. We know there is no other square faced solution beyond the cube. 5f = 20 leads to f = 4 and we already know that the only solution with 4 faces is the tetrahedron.

Within this general process, it is now somewhat difficult to state with any certainty what, if any, irregular polyhedron or prism satisfies these results. In other words, what, if any, polyhedron or prism has 6 faces, 6 vertices and 10 edges? It is here that I maintain that you must apply your visual acuity and 3 dimensional perception in discerning whether one exists. As it turns out, there is one, the pentagonal pyramid. This is a pyramid with a pentagonal shaped base having 6 faces, 6 vertices and 10 edges.

What about e = 9. We now have v + f = 11 giving us possible "v" and "f" values of 4-7, 5-6, 6-5 and 7-4. After applying the "v" and "f" rules, we are left with 5-6 and 6-5 as candidates. Well, 3f = 18 leads to f = 6 and v = 5 which happens to be the irregular convex pyramid of two equilateral faced pyramids joined at their bases and having 6 faces, 5 vertices and 9 edges. While not derivable using our expressions, it turns out that a truncated prism with triangular cross section has 5 faces, 6 vertices and 9 edges.

It is clear that some 3 dimensional visual acuity together with some mathematical knowledge are necessary to derive viable polyhedra given a supposedly valid number of edges.

In my meandering through the earlier material, I stumbled upon another way of deriving valid polyhedra given the number of edges. It is a bit more cumbersome but worthy of your review in case it might more easily apply to other polyhedra, which I have not pursued as yet.

Let us define our unknown polyhedron as having "f" faces, each having "m" edges, and "v" vertices, each joining "n' edges. It is clear that mf = 2e and nv = 2e. Substituting f = 2e/m and v = 2e/n into v - e + f = 2, we obtain 1/m + 1/n = 1/2 + 1/e = (e + 2)/2e.

Relationships of the form 1/x + 1/y = 1/z can be solved in the following manner.

If a value is selected for x, we then have 1/y = 1/z - 1/x = (x - z)/zx resulting in y = zx/(x - z) the solution then
becoming (x, y) = (x, zx/(x - z). We must therefore find the positive integers that make (x - z) a positive divisor of zx, where z is a given positive integer. This requires that (x - z) be = or > 1, i.e., x = or > (z + 1).
From y = zx/(x - z) we can derive y = [(x - z)z + z^2]/(x - z) = z + z^2/(x - z).
For y to be an integer, (x - z) must be a divisor of the constant z^2, noting that (x - z) must be positive.
If a positive integer k divides n^2, then setting (x - z) = k, we get the solution (x, y) = [(z + k), (z + z^2/k)].
Thus, the number of solutions is merely the number of positive divisors k of z^2.
If the prime decomposition of z is z = p1^a1(p2^a2) - - - - pk^ak, then z^2 = p1^2a1(p2^2a2) - - - - pk^2ak.
The number of solutions is then N = (2a1 + 1)(2a2 + 1) - - - - (2ak + 1).

Example: 1/x + 1/y = 1/10.
10 = 2^1 x 5^1
100 = 2^2 x 5^2
N = (2 + 1)(2 + 1) = 9
k = 1, 2, 4, 5, 10, 20, 25, 50, 100
For k = 1 x = 11 and y = 110
1/11 + 1/110 = 11/1210 + 110/1210 = 121/1210 = 1/10.
For k = 5 x = 15 and y = 30
1/15 + 1/30 = 15/450 + 30/450 = 45/450 = 1/10.
And so it goes.

How can we apply this to our problem?
Assume e = 6.
Then, 1/m + 1/n = (6 + 2)/12 = 8/12.
Dividing through by 8 yields 1/8m + 1/8n = 1/12.
12 = 2^2(3^1)
12^2 = 144 = 2^4(3^2)
N = (4 + 1)(2 + 1) = 15
k = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.
For k =.........8m.........8n........m.......n
........1..........13........156
........2..........14.........84
........3..........15.........60
........4..........16.........48.........2........6 (m must be 3 or greater, therefore, not viable)
........6..........18.........36
........8..........20.........30
........9..........21.........28
.......12.........24.........24.........3........3
.......16.........28.........21
.......18.........30.........20
.......24.........36.........18
.......36.........48.........16.........6........2 (m must be 3 or greater, therefore, not viable)
.......48.........60.........15
.......72.........84.........14
.....144........156........13
.
For m and n equaling 3, we have 3f = 2(6) = 12 making f = 4 and 3v = 12 making v = 4, the characteristics of a tetrahedron with 4 triangular faces, 4 vertices and 6 edges, whence 4 - 6 + 4 = 2.

What if e = 12?
Then, 1/m + 1/n = (12 + 2)/24 = 7/12.
Dividing through by 7 yields 1/7m + 1/7n = 1/12.
12 = 2^2(3^1)
12^2 = 144 = 2^4(3^2)
N = (4 + 1)(2 + 1) = 15
k = 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144.
For k =.........7m........7n.........m.......n
........1..........13........156
........2..........14.........84
........3..........15.........60
........4..........16.........48
........6..........18.........36
........8..........20.........30
........9..........21.........28..........3.......4
.......12.........24.........24
.......16.........28.........21..........4.......3
.......18.........30.........20
.......24.........36.........18
.......36.........48.........16
.......48.........60.........15
.......72.........84.........14
.....144........156........13
.
For m = 3 and n = 4, we have 3f = 2(12) = 24 making f = 8 and 4v = 24 making v = 6, the characteristics of an octahedron with 8 triangular faces, 6 vertices and 12 edges, whence 8 - 12 + 6 = 2.
For m = 4 and n = 3, we have 4f = 24 making f = 6 and 3v = 24 making v = 8, the characteristics of a cube with 6 faces, 8 vertices and 12 edges, whence 8 - 12 + 6 = 2.

What if e = 30?
Then, 1/m + 1/n = (30 + 2)/60 = 8/15.
Dividing through by 8 yields 1/8m + 1/8n = 1/15.
15 = 3^1(5^1)
15^2 = 225 = 3^2(5^2)
N = (2 + 1)(2 + 1) = 9
k = 1, 3, 5, 9, 15, 25, 45, 75, 225.
For k =.........8m........8n.........m.......n
........1...........16.......240
........3...........18........90
........5...........20........60
........9...........24........40..........3........5
.......15..........29........29
.......25..........40........24..........5........3
.......45..........60........20
.......75..........90........18
......225........240.......16
.
For m = 3 and n = 5, we have 3f = 2(30) = 60 making f = 20 and 5v = 60 making v = 12, the characteristics of an icosahedron with 20 triangular faces, 12 vertices and 30 edges, whence 12 - 30 + 20 = 2.
For m = 5 and n = 3, we have 5f = 60 making f = 12 and 3v = 60 making v = 20, the characteristics of a dodecahedron with 12 pentagonal faces, 20 vertices and 30 edges, whence 20 - 30 + 12 = 2.

As I said, not necessarily quicker.

This is not intended to be a complete treatment of the topic but it has been interesting and educatuional. I do not know if it has answered your original question but I'm sure it has shed some light on the matter. If you find any errors or false turns in the material I would appreciate your letting me know. If I have time in the future I hope to pursue it further to determine whether specific polyhedra and/or prisms can be more easily defined given only the edges, faces or vertices.

Homework is Completed By:

Writer Writer Name Amount Client Comments & Rating
Instant Homework Helper

ONLINE

Instant Homework Helper

$36

She helped me in last minute in a very reasonable price. She is a lifesaver, I got A+ grade in my homework, I will surely hire her again for my next assignments, Thumbs Up!

Order & Get This Solution Within 3 Hours in $25/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 3 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 6 Hours in $20/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 6 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

Order & Get This Solution Within 12 Hours in $15/Page

Custom Original Solution And Get A+ Grades

  • 100% Plagiarism Free
  • Proper APA/MLA/Harvard Referencing
  • Delivery in 12 Hours After Placing Order
  • Free Turnitin Report
  • Unlimited Revisions
  • Privacy Guaranteed

6 writers have sent their proposals to do this homework:

Engineering Mentor
Quality Homework Helper
Engineering Exam Guru
Engineering Help
Professional Coursework Help
Engineering Solutions
Writer Writer Name Offer Chat
Engineering Mentor

ONLINE

Engineering Mentor

You can award me any time as I am ready to start your project curiously. Waiting for your positive response. Thank you!

$43 Chat With Writer
Quality Homework Helper

ONLINE

Quality Homework Helper

I am known as Unrivaled Quality, Written to Standard, providing Plagiarism-free woork, and Always on Time

$33 Chat With Writer
Engineering Exam Guru

ONLINE

Engineering Exam Guru

I have read and understood all your initial requirements, and I am very professional in this task.

$39 Chat With Writer
Engineering Help

ONLINE

Engineering Help

Give me a chance, i will do this with my best efforts

$40 Chat With Writer
Professional Coursework Help

ONLINE

Professional Coursework Help

Give me a chance, i will do this with my best efforts

$36 Chat With Writer
Engineering Solutions

ONLINE

Engineering Solutions

I have read your project details. I can do this within your deadline.

$48 Chat With Writer

Let our expert academic writers to help you in achieving a+ grades in your homework, assignment, quiz or exam.

Similar Homework Questions

Matching leadership styles to situations - Psyc110 lab - Reflected best self exercise assignment and instructions to participants - What does lynda shaffer mean by southernization - Toss the turtle cheat codes - R v stokes and difford - Amp flexible super fund - Modern database management 13th edition free - You burn with the brightest flame - Case study analysis - How to view xbrl balance sheet - Cloverleaf plc case study answers - INTRODUCTION TO PSYCHOLOGY PAPER #1 - Arrange the compounds in order of increasing acidity - Persuasive speech outline on social networking - Destiny 2 majestic solstice suit - E-commerce Business - File submission: Computer Operation Vocabulary - Phet colorado circuit construction kit - Research Round-up 8.0 - Ken is 63 years old and unmarried form - Lobiondo wood & haber 2018 - Dual core itanium 2 processor - Trinity industries organizational chart - Operations management simulation process analytics solutions - Consider a normal population distribution with the value of - Californian copper syndicate v harris - Es ridículo que tú (tener) un resfriado en verano. - Wbs code in ms project - Pepsi vs coke case study - Case study on international human resource management with solution - Psychiatric mental health nurse practitioner review and resource manual pdf - Moore parker critical thinking pdf - BE DS 8. - Case study discussion - A tale of two cities book 3 chapter 3 - Resource data management rdm - When mr pirzada came to dine text analysis - Mugin 3m uav - FINAL CAPSTONE PROJECT (HEALTH SPA) - Diy diatom filter aquarium - A beautiful mind cast - How To Find A Personal Statement Writing Service - Marketing process business studies - Maximum megahertz project case study solution - Sports of all sorts produces distributes and sells high-quality skateboards - What is the main conflict in the story nilda - The probability that a cellular phone company kiosk - Hays addressing framework - The angles of similar triangles are equal always sometimes never - Assignment - Chromagen solar hot water - Civic responsibility lesson plan - HW 4 - Minit lube case study - Exponent key on casio calculator - Research proposal on brand loyalty - Highvale secondary college compass - Air classification in pharmaceuticals - Defending a thesis in an argumentative essay - The protocols of the elders of zion pdf - Uti soap note - Tamu petroleum engineering faculty - Biology lab 5 report - Motifs in movies examples - Biblical view of personality development - Bank of america merrill lynch case study - Ph of buffer solutions lab report - I have a dream speech questions pdf - Economics - Gateway cengage new account success - The Cybersecurity Analyst's Toolbox - Checking out me history poem analysis - Different types of letters - Sporlan bulletin 10 9 - Environmental Case 4 (solid waste disposal) - Risk assessment for community event - Linear speed formula circle - Ksp for calcium hydroxide lab - General trading company profile doc - Jack the bounty hunter card trick steps - Standing silent documentary - History assignments - Employee competency assessment sample - What size is a9 paper - Draw an angle with the given measure in standard position - How does polarity affect solubility - Thematic backpack plan - The law of conservation of mass todd ramsey - Dan scardino lois and clark - American caned in singapore for spray painting - What benefits do wikis provide to companies? - Kelo case brief - Cytosine arabinoside mechanism of action - Impact of digital india - Cbus super usi number - Why phones should not be allowed in school - Volunteering persuasive speech topics - Carvin v arkansas power and light - Action potential